HolisticGNN: Geometric Deep Learning Engines for Computational SSDs

Miryeong Kwon Donghyun Gouk

Sangwon Lee Myoungsoo Jung

Computer Architecture and Memory Systems Laboratory
Korea Advanced Institute of Science and Technology (KAIST)
http://camelab.org

I. INTRODUCTION

Graph neural networks (GNNs) process large-scale graphs con-
sisting of a hundred billion edges, which exhibit much higher
accuracy in a variety of prediction tasks. However, as GNNs are
engaged with a large set of graphs and embedding data on storage,
they suffer from heavy I/O accesses and irregular computation.

We propose a novel deep learning framework on large graphs,
HolisticGNN, that provides an easy-to-use, near-storage inference
infrastructure for fast, energy-efficient GNN processing. To achieve
the best end-to-end latency and high energy efficiency, Holis-
ticGNN allows users to implement various GNN algorithms and
directly executes them where the data exist in a holistic manner.

We fabricate HolisticGNN’s hardware RTL and implement its
software on an FPGA-based computational SSD (CSSD). Our
empirical evaluations show that the inference time of HolisticGNN
outperforms GNN inference services using high-performance GPU
by 7.1x while reducing energy consumption by 33.2 X, on average.

II. GRAPH NEURAL NETWORKS AND ITS CHALLENGE

GNNs generalize conventional deep learning (DL) to understand
structural information in the graph data by incorporating feature
vectors (i.e., embeddings) in the learning algorithms. GNNs can
capture topological structures of the local neighborhood (per node)
in parallel with a distribution of the neighborhood’s node embed-
dings [1].

GNN algorithm. As shown in Figure 1a, GNNs process the struc-
tural information with node embeddings by employing multiple
layers. Each computational layer of GNNs is composed of two
primary execution phases, called neighborhood aggregation and
node transformation. Based on a given target node, each layer
performs the aggregation and transformation for a different hop
of neighbors (connected to the target node). While the aggregation
accumulates node embeddings of the target node’s neighbors, the
transformation converts the aggregated results to a new node
embedding through a multi-layer perceptron (MLP). Aggregation,
therefore, processes data relying on graph structures and mostly
exhibits irregular, graph-natured execution patterns. In contrast, the
computing procedure of transformation is very similar to that of
conventional neural networks (e.g., CNNs and RNNs), but it does
not require heavy computation.

GNN preprocessing. GNNs need to deal with real-world graphs
consisting of billions of edges and node embeddings [2]. The graph
information initially reside in storage and are regularly updated as
raw-format data owing to their large size and persistence require-
ments (cf. Figure 1b). As GNNs need to understand the structural
geometry and feature information of given graph(s), the raw-format
data should be loaded into working memory and reformatted in the
form of an adjacency list before the actual inference services begin.
We refer to this task as graph preprocessing. Since the internal
memory of GPUs is insufficient to accommodate all the inputs,
it is essential to reduce the size of the graph and embeddings by
preprocessing them. The modern GNN models in practice sample
a set of subgraphs and embeddings from the target graph infor-
mation and aggregate the sampled embeddings for inductive node
inferences. This batch preprocessing can significantly reduce the
amount of data to process, which can also decrease the computation
complexity to infer the results without an accuracy loss.

Graph | Batch
preprocessing preprocessing
e N)

00" :
“es ~O mmm
Edge Adjace- Subgraph &

array ncylist embeddings

(a) GNN algorithm. (b).
Fig. 1: End-to-end GNN inference.

) GNN preprocessing.

Challenge analysis. While there is less system-level attention on
the management of both graph preprocessing and batch prepro-
cessing, their tasks introduce heavy storage accesses and frequent
memory operations. To analyze these challenges, we use the most
popular GNN model, GCN [3], and decompose the “end-to-end
GCN inference” times across 13 real-world graph datasets (cf. Table
2b). As shown in Figure 2a, GCN inference processing only takes
2% of the end-to-end inference latency, on average. Specifically,
storage accesses for embeddings account for 61% of the most end-
to-end latency for the small graphs having less than 1 million
edges. Since graph preprocessing includes a set of heavy computing
processes such as a radix sort, it also consumes 28% of the end-
to-end latency for the small graphs. As the graph size increases
(> 3 million edges), storage accesses for embeddings become the
dominant contributor of the end-to-end GNN inference time (94%,
on average).

III. NEAR-STORAGE INFERENCE FRAMEWORK

As shown in Figure 3a, the new concept of computational SSDs
(CSSDs) decouples the computing unit from the storage resources
by locating reconfigurable hardware (FPGA) near SSD in the
same PCle subsystem (card) [4]. CSSD allows the hardware logic
fabricated in FPGA to access the internal SSD via the internal
PClIe switch. To this end, the host is responsible for writing/reading
data on the SSD using the I/O region of NVMe protocol while
giving the data’s block address to the FPGA through its own I/O
region, whose address is designated by PCle’s base address register.
While CSSD is promising to realize near-data processing, it is non-
trivial to automate all end-to-end procedures of GNN inference
over hardware-only logic because of the variety of GNN model
executions. For example, the aggregation and combination of GNNs
can be accelerated with parallel hardware architecture, but GNN’s
graph traversing, GNN preprocessing, and embedding handling are
impractical to be programmed into hardware because of their graph-
natured computing irregularities.

Overview of HolisticGNN. HolisticGNN is a hardware and soft-
ware co-programmable framework that leverages CSSD to acceler-
ate the end-to-end GNN inference services near storage efficiently.

0;1 00 7 0 Legend Edges Feature
B ET5 2522 chmleon 65K 2326
ci- S28p@| o citeseer 9K 3704
g =50 H 3 e8¢ coraml 19K 2880
225 i 566388 dblpfull 123K 1639
T 3 LI o Fpad cs 182K 6805
290 o Hodl| §5388 corafull 147K 8710
o STESB3SY8 288 |88 5| _physics 530K 8415
0988 % vo2 | 888685 roadix 3.84M 4353
ES8S5 52 383 2628 E| roadpa 308M 4353
£5°° 048 =28 |mrmmm youtube 299M 4353

(a) Latency breakdown. (b) Graph dataset.

Fig. 2: Challenge analysis of end-to-end GNN inference.

Host CPU CSSD
Graph Graph XBuilder
CSSD Store Runner User
o t t
Switch> 2 & e _DFG Accer.
FPGA|| | 2|+ Al [B] —o
' ?
PCle BARs neighbors logics
NVMe[[FPGA] SSD Shell
SSD 1/0 L
(a) CSSD. (b) Overview of HolisticGNN.

Fig. 3: Enabling CSSD for near storage GNN processing.

The software part of our framework offers easy-to-use program-
ming/management interfaces and performs GNN preprocessing
directly from where the data is stored, thereby minimizing the
aforementioned storage access overhead. On the other hand, our
framework’s hardware logic and administration module provide
a low-overhead bare-metal computing environment and reconfig-
urable hardware to accelerate GNN model executions. As shown
in Figure 3b, our framework is specifically composed of three
distinguishable components to support fast and energy-efficient
GNN processing: i) graph-centric archiving system (GraphStore),
ii) programmable inference client and server model (GraphRunner),
and iii) accelerator building system (XBuilder).

Graph-centric archiving system. The main purpose of GraphStore
is to bridge the semantic gap between the graph abstraction and its
storage representation without having a storage stack. GraphStore
manages the user data as a graph structure rather than exposing
it directly as files. Generally speaking, GraphStore converts the
incoming edge array to an adjacency list in parallel with transferring
the embedding table, and it stores them to the internal SSD. This
makes the conversion and computing latency overlapped with the
heavy embedding table updates, which can deliver the maximum
bandwidth of the internal storage. For the storage accesses, Graph-
Store uses VID to logical page number (LPN) mapping information
by being aware of a long-tailed distribution of graph degree as well
as flash page access granularity. The LPNs are used for accessing
CSSD’s internal storage through NVMe, which can minimize the
write amplification caused by I/O access granularity differences.

Programmable inference model. GraphRunner processes a series
of GNN inference tasks from the beginning to the end by allowing
users to program the tasks using a computational graph, dataflow
graph (DFG). The users can then simply transfer the DFG into the
CSSD and manage its execution through a remote procedure call
(RPC). This does not require cross-compilation or storage stack
modification to program/run a user-defined GNN model. Once the
DFG is downloaded, GraphRunner executes each node by checking
the registered hardware codes in CSSD. The users may want to
register more hardware codes because of adopting a new GNN
model or hardware logic. To meet this requirement, GraphRunner
also offers a Plugin mechanism registering hardware codes and a
new device configuration as a shared object.

Accelerator builder. XBuilder manages the FPGA hardware in-
frastructure and accelerates diverse GNN algorithm executions near
storage. It first divides the FPGA logic die into two regions, Shell
and User, using the dynamic function exchange (DFX) technique
[5]. XBuilder then secures hardware logic necessary to run Graph-
Store and GraphRunner at Shell while placing DL accelerator(s) to
User. The Shell and User hardware are programmed to CSSD as
two separate bitstreams, such that we can reprogram the User with
a different bitstream at any time. To this end, XBuilder implements
a hardware engine in Shell by using an internal configuration access
port, which downloads a bitstream and programs it to User.

© 1.00 3

£ 075 gé g

F 050 e 832

$ 082 o

= 0 €

i 0:000 LALLM WNIg £ B:005 LLALMLALILY A

£ STES858338 2 58ES8358582
5 £358 S2E%3 £855 S28%3
= §5°% 8&8°eg §5°% 88222

[8]
(a) End-to-end latency. (b) Energy consumption.
Fig. 4: End-to-end performance comparison.

IV. EVALUATIONS AND CONCLUSION

Evaluation setup. We prototype a customized CSSD that employs
a 14nm 730MHz FPGA chip [6], 16GB DDR4-2400 DRAM, and a
4TB high-performance SSD together within the same PCle 3.0x4
subsystem. For a fair performance comparison, we also prepare
high-performance GPU, RTX 3090.

End-to-end latency. Figure 4a shows that our HolisticGNN
(HGNN) exhibits 2x shorter end-to-end latency compared to RTX
3090 for the small graphs. This performance superiority of HGNN
becomes higher when we infer large-scale graphs (e.g., youtube),
which makes HGNN 222.8x faster than RTX 3090, on average.
HGNN can preprocess graphs in parallel with the graph updates and
prepare sampled graphs/embeddings directly from the internal SSD,
thereby successfully reducing the overhead of GNN preprocessing
and storage accesses.

Energy consumption. Figure 4b analyzes the energy consumption
characteristics of HGNN. For the small graphs, HGNN exhibits
8.1 better energy consumption behaviors compared to RTX 3090,
on average. This is because our CSSD consumes only 111 Watts
at the system-level thanks to its low-power computing of FPGA
(16.3 Watts) while significantly reducing the inference latency. This
makes HGNN much more promising on GNN computing compared
to other GPU-based acceleration approaches. HGNN’s energy gains
become more significant when analyzing the large-scale graphs; it
consumes 453.2x less energy than the RTX 3090, on average.

In conclusion, we designed an easy-to-use, near-storage inference
infrastructure for fast, energy-efficient GNN processing by allowing
users to implement various GNN algorithms close to the data source
and execute them directly near storage in a holistic manner.

V. DEMOSCENE AND ORIGINAL PUBLICATION

Demo video. https://www.youtube.com/watch?v=b5fZBESHITM

Original publication. M. Kwon, D. Gouk, S. Lee, and
M. Jung. USENIX FAST 2022. Hardware/Software Co-
Programmable = Framework for Computational SSDs to

Accelerate Deep Learning Service on Large-Scale Graphs.
https://www.usenix.org/system/files/fast22-kwon.pdf

VI. ACKNOWLEDGEMENT

This research is supported by Samsung Research Funding &
Incubation Center of Samsung Electronics (SRFC-IT2101-04). My-
oungsoo Jung is the corresponding author.

REFERENCES

[1] W.L. Hamilton, R. Ying, and J. Leskovec, “Representation Learning on Graphs:
Methods and Applications,” arXiv preprint arXiv:1709.05584, 2017.

[2] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee, “Billion-
scale commodity embedding for e-commerce recommendation in alibaba,” in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018.

[3] T. N. Kipf and M. Welling, “Semi-supervised Classification with Graph Con-
volutional Networks,” arXiv preprint arXiv:1609.02907, 2016.

[4] S. Electronics, “Samsung SmartSSD,” https://samsungsemiconductor-us.com/
smartssd-archive/pdf/SmartSSD_ProductBrief_13.pdf.

[5] Xilinx, “Dynamic Function eXchange,” https://www.xilinx.com/
content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_1/
ug909-vivado-partial-reconfiguration.pdf.

, “Virtex UltraScale+ FPGA,” https://www.xilinx.com/content/dam/xilinx/

support/documentation/product-briefs/virtex-ultrascale- product-brief.pdf.

