Semi-Asymmetric Parallel Graph Algorithms
for NVRAMs

Laxman Dhulipala’

Charles McGuffey! Hongbo Kang? Yan Gu®
Guy E. Blelloch! Phillip B. Gibbons!

Julian Shun*

ICarnegie Mellon University 2Tsinghua University 3U.C. Riverside *MIT CSAIL

Over the past decade, there has been a steady increase in
the main-memory sizes of commodity multicore machines,
which has led to the development of fast shared-memory
algorithms for processing massive graphs with hundreds
of billions of edges on a single machine [4] 11} [12]. Single-
machine analytics by-and-large outperform their distributed
memory counterparts, running up to orders of magnitude
faster using much fewer resources [4, [10H12]. The trend in
increasing memory sizes continues today in the form of new
non-volatile memory technologies that are now emerging
on the market (e.g., Intel’s Optane DC Persistent Memory).
These devices provide an order of magnitude greater mem-
ory capacity per DIMM than traditional DRAM, and offer
byte-addressability and low idle power, thereby providing a
realistic and cost-efficient way to equip a commodity multi-
core machine with multiple terabytes of non-volatile RAM
(NVRAM).

Due to these advantages, NVRAMs are likely to be a key
component of many future memory hierarchies, likely in
conjunction with a smaller amount of traditional DRAM.
However, a challenge of these technologies is to overcome an
asymmetry between reads and writes—write operations are
more expensive than reads in terms of energy and through-
put. This property requires rethinking algorithm design
and implementations to minimize the number of writes to
NVRAM [2 3l [16]. As an example of the technology and
its tradeofs, the experiments in our work are done on a 48
core machine that has 8x as much NVRAM as DRAM (and
we are aware of machines with 16x as much NVRAM as
DRAM [6]]), where combined read throughput for all cores
from the NVRAM is about 3x slower than reads from the
DRAM, and writes on the NVRAM are a further factor of
about 4x slower [[7}[15] (a factor of 12 total).

A property of most graphs used in practice is that they are
sparse, but still tend to have many more edges than vertices,
often from one to two orders of magnitude more. This is true
for almost all social network graphs [8]], but also for many
graphs that are derived from various simulations [13]]. Given
that a large graph can have over 100 billion edges (requiring
around a terabyte of storage), but only a few billion vertices,
a popular and reasonable assumption is that vertices, but not
edges, fit in DRAM ([[} /5 9] [14] [17].

With these characteristics of NVRAM and real-world graphs
in mind, we propose a semi-asymmetric approach to par-
allel graph analytics, in which (i) the full graph is stored

Problem | Ty |Tysn| SU |[Work | Gal | GBBSy
BFS 561 12.2 | 45.9 | O(m) 35.2 35.7
Weighted BFS 4420 98 |45.1| O(m)* — 190
Bellman-Ford 3760 | 82.3 | 45.5 | O(d(G)m) | 118 149
1-Src Widest Path 3479 | 775 | 448 | O(d(G)m) | — 89.8
1-Src Betweenness 3267 | 68.5 | 47.6 | O(m) 56.4 148
O(k)-Spanner 2219 | 55.1 [40.2 | O(m)* - 124.8
LDD 985 | 24.0 | 41.0 | O(m)* — | 622
Connectivity 1564 | 36.2 | 43.2 | O(m)* 76.0 75.8
Spanning Forest 2439 | 61.3 | 38.3 | O(m)* — 116
Biconnectivity' 10930 | 234 | 46.7 | O(m)* — 482
MIS 2308 | 52.3 | 44.1 | O(m)* — 98.8
Maximal Matching’ | 7280 | 166 | 43.1 | O(m)* - 455
Graph Coloring 10880 | 239 | 45.5 | O(m)* — 216
Apx Set Cover' 7968 | 193 | 41.2 | O(m)* — 246
k-core 8348 | 215 | 38.8 | O(m)* — 259
Apx Dens. Subgraph | 1930 | 42.2 | 45.7 | O(m) — 106
Triangle Counting’ — |3520| — | O(m3?) — | 1665
PageRank Iteration | 1033 | 23.6 | 43.5 | O(m) — 37.5
PageRank — 827 | — | O(Py-m) | 1706 | 1318

Table 1. Running times and speedup of our algorithms on the
Hyperlink2012 graph (Columns 2-4) using NVRAM where T} cor-
responds to the single-threaded time, Tygj, corresponds to the run-
ning time on 48 cores with hyper-threading, and SU is the parallel
speedup. The single-threaded times for triangle counting and PageR-
ank are omitted because they did not finish in a reasonable amount
of time. We use T if our algorithm uses O(n + m/log n) words of
memory. Column 5 shows the work of our algorithms in the PSAM
model. We use * to denote that a bound holds in expectation. d(G)
is the diameter of the graph and Pj is the number of iterations
of PageRank until convergence. In all cases we assume m = Q(n).
Column 6 (Gal) shows the running time of Galois implementations
obtained on a similarly configured NVRAM-equipped machine re-
ported in [6], with problems not solved by them marked with —.
Column 7 (GBBSy) shows running times of unmodified GBBS [4]
codes run using Memory Mode [7] on this graph. All times are in
seconds.

in NVRAM and is accessed in read-only mode and (ii) the
amount of DRAM is proportional to the number of vertices.
Although completely avoiding writes to the NVRAM may
seem overly restrictive, the approach has the following ben-
efits: (i) algorithms avoid the high cost of NVRAM writes,
(ii) the algorithms do not contribute to NVRAM wear-out
or wear-leveling overheads, and (iii) algorithm design is in-
dependent of the actual cost of NVRAM writes, which has
been shown to vary based on access pattern and number
of cores [[7,[15] and will likely change with innovations in
NVRAM technology and controllers. Moreover, it enables an

important NUMA optimization in which a copy of the graph
is stored on each socket, for fast read-only access without
any cross-socket coordination. Finally, with no graph muta-
tions, there is no need to re-compress the graph on-the-fly
when processing compressed graphs [4].

The key question, then, is the following: Is the (restrictive)
semi-asymmetric approach effective for designing fast graph
algorithms? In our work, we provide both theoretical and
experimental evidence of the approach’s effectiveness.

We consider 18 well-studied graph problems (see Table
and design fast and highly scalable semi-asymmetric algo-
rithms for them. The key innovations are in ensuring that
the updated state is associated with vertices and not edges,
which is particularly tricky (i) for certain edge-based parallel
graph traversals and (ii) for algorithms that “delete” edges as
they go along in order to avoid revisiting them once they are
no longer needed. We provide general techniques to solve
both problems. For the latter, used by four of our algorithms,
we require relaxing the prescribed amount of DRAM to be
on the order of one bit per edge.

From a theoretical perspective, we propose a model for
analyzing algorithms in the semi-asymmetric setting. The
model, called the Parallel Semi-Asymmetric Model (PSAM),
consists of a shared asymmetric large-memory with un-
bounded size that can hold the entire graph, and a shared
symmetric small-memory with O(n) words of memory, where
n is the number of vertices in the graph. In a relaxed version
of the model, we allow small-memory size of O(n + m/log n)
words, where m is the number of edges in the graph. Al-
though we do not use writes to the large-memory in our
algorithms, the PSAM model permits writes to the large-
memory, which are w > 1 times more costly than reads. We
prove strong theoretical bounds in terms of PSAM work and
depth for all of our parallel algorithms (we show the work
bounds in Table[1). Most of our algorithms are work-efficient
(performing asymptotically the same work as the best se-
quential algorithm for the problem) and have polylogarith-
mic depth (parallel time). Our theoretical guarantees ensure
that our algorithms perform reasonably well across graphs
with different characteristics, machines with different core
counts, and NVRAMs with different read-write asymmetries.

We experiment with implementations of our algorithms
on a variety of large-scale real-world graphs using Intel Op-
tane DC Persistent Memory. Our implementations are able
to scale to the largest publicly-available graph, the Hyper-
link2012 graph with over 3.5 billion vertices and 128 billion
edges (and 225 billion edges for algorithms running on the
undirected/symmetrized graph). Table [1|shows the running
times on the Hyperlink2012 graph using a 48-core machine
with 375GB of DRAM and 3TB of NVRAM. Note that we can-
not fit the entire Hyperlink2012 graph and run algorithms on
this graph in the DRAM of this machine. Our NVRAM algo-
rithms are 1.86x faster on average than Galois [6] algorithms
(state-of-the-art algorithms designed for NVRAM), and 1.87x

faster on average than existing DRAM-only GBBS [[4]] codes

run using Memory Mode [7] on the Hyperlink2012 graph.

Moreover, our algorithms running on NVRAM nearly match

the running times of GBBS algorithms running entirely in

DRAM, with all but three algorithms within 17%, by effec-

tively hiding the costs of repeatedly accessing NVRAM ver-

sus DRAM.
The main contributions of our work are:

(1) We propose a semi-asymmetric approach to parallel graph
analytics that avoids writing to the NVRAM and uses
DRAM proportional to the number of vertices.

(2) We design semi-asymmetric algorithms for 18 fundamen-
tal graph problems, and present general techniques for
devising such algorithms. Our codes are open sourceﬂ

(3) We introduce the Parallel Semi-Asymmetric Model, and
give (near) work-optimal algorithms in the model.

(4) We evaluate our algorithms on a state-of-the-art NVRAM
system, and show that our algorithms outperform prior
work and nearly match DRAM-only performance.

References

[1] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach
to external graph algorithms. Algorithmica, 2002.

[2] G.E.Blelloch,]J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Sorting
with asymmetric read and write costs. In SPAA, 2015.

[3] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool,
O. Schwartz, and H. V. Simhadri. Write-avoiding algorithms. In
IPDPS, 2016.

[4] L.Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel
graph algorithms can be fast and scalable. In SPAA, 2018.

[5] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On
graph problems in a semi-streaming model. TCS, 2005.

[6] G.Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali. Single machine
graph analytics on massive datasets using Intel Optane DC Persistent
Memory. CoRR, abs/1904.07162, 2019.

[7] J. Izraelevitz, J. Yang, et al. Basic performance measurements of
the Intel Optane DC Persistent Memory module. arXiv preprint
arXiv:1903.05714, 2019.

[8] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection, 2014.

[9] A. McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 2014.

[10] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what
COST? In HotOS, 2015.

[11] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. In PPOPP, 2013.

[12] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: Parallel
processing of compressed graphs with Ligra+. In DCC, 2015.

[13] SuiteSparse Matrix Collection. https://sparse.tamu.edu/.

[14] P.Sun,Y.Wen, T.N. B. Duong, and X. Xiao. GraphMP: An efficient semi-
external-memory big graph processing system on a single machine.
In ICPADS, 2017.

[15] A.vanRenen, L. Vogel, V. Leis, T. Neumann, and A. Kemper. Persistent
memory I/O primitives. In DaMoN, 2019.

[16] S. D. Viglas. Write-limited sorts and joins for persistent memory.
PVLDB, 2014.

[17] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S.
Szalay. Flashgraph: Processing billion-node graphs on an array of
commodity SSDs. In FAST, 2015.

Uhttps://github.com/Idhulipala/gbbs

https://github.com/ldhulipala/gbbs

	References

