PMTest: A Fast and Flexible Testing Framework for Persistent Memory Programs

Yizhou Wei

University of Virginia

Sihang Liu

University of Virginia

1 Introduction

Persistent Memory (PM) technologies, such as Intel’s Optane DC
PM [6], offer the persistence of disks combined with performance
close to that of DRAM. PM enables software to directly manage per-
sistent data, bypassing OS indirections, significantly improving the
performance over conventional systems. Various software systems
are being developed and deployed to leverage the benefit from PM.
Examples include PM-optimized file systems [2, 13], databases [9],
and many other customized applications and libraries [1, 5, 12]. The
persistent data on PM is expected to be recoverable in the event of a
crash (e.g., power failure). We refer to this requirement as the crash
consistency guarantee, where the persistent data managed by the
program is always in a consistent state.

1.1 Background in Persistence Programming

Programming in PM systems for crash consistency is hard and error-
prone. Properly implemented crash consistent software needs to
meet two fundamental requirements: durability and ordering. A
durability guarantee from the PM system is required to enforce data
to reliably reach persistence. As the cache hierarchies are volatile
in our current systems, simply executing a store instruction to a
PM location does not ensure the update has become persistent.
As a solution, the x86 ISA introduced new optimized instructions
(e.g., CLWB) to efficiently write back cache lines to memory, and
the ARM ISA introduced the DC CVAP instruction to write back a
cache line to the persistence domain. We refer to the act of making
a cache line persistent as a persist operation. Enforcing ordering
is another fundamental necessity to ensure crash consistency. An
ordering guarantee from the PM system is required to explicitly order
persist operations as the hardware can reorder instructions in the
processor and cache hierarchy. For example, the commonly used
undo logging mechanism requires the undo log entry to be created
and persisted before the associated data get modified. The x86 ISA
provides ordering guarantees through the SFENCE instruction. A
combination of a CLWB and an SFENCE issued after a write to a cache
line ensures that the new value of the cache line has persisted before
any subsequent writes. For simplicity, we refer to the combination
of “CLWB; SFENCE” as a persist_barrier. When developing crash
consistent software for PM systems, programmers must carefully use
these low-level primitives for correctness. Next, we use an example
to demonstrate the difficulty in programming for PM.

Example. Figure 1 shows a snippet of code that updates an array
on PM in a crash consistent manner. The program takes the undo
logging approach that backs up the data before performing the
modification in-place, such that there is always a consistent copy
(either the backup or the original data) for recovery. It first creates a
backup copy (line 2) and sets it to be valid (line 3). Then, it persists
the backup (line 4), followed by updating the array index in place
(line 5), and invalidates the backup copy (line 6). Finally, it persists
the in-place update and the change of the valid bit (line 7). This
example seems correct as it places a persist_barrier after the
backup and after the in-place update assuming that these barriers
will ensure that the update is only performed after the backup gets
persisted. However, it still misses two persist_barriers: one right
after the creation of the backup copy (between lines 2 and 3), and
another right after updating the new array index (between lines 5
and 6). Omitting either one can render the array unrecoverable in

Jishen Zhao
UC San Diego

Samira Khan
University of Virginia

Aasheesh Kolli
Penn State University
VMware Research

event of a failure. If a failure occurs at line 6, it is possible that due
to hardware reordering valid has persisted while the update to the
array has not. Therefore, after recovery, the array will treat the stale
value in memory as the updated one.

void ArrayUpdate(int index, item_t new_val) {
backup.val = array[index];
backup.valid = true;
persist_barrier();
array[index] = new_val;
backup.valid = false;
persist_barrier();

Missing persist_barrier()

Figure 1. Example of a buggy PM program.

Even with the help of transactional libraries that build upon
these low-level primitives [1, 5, 12], programmers still need to un-
derstand the specification of the durability and ordering guarantees
provided by these libraries to properly use them. The major difficulty
arises from the fact that the order of persist operations executed in
the hardware can be different from the program order. As a result,
programmers cannot determine whether the crash consistency al-
gorithm is correctly implemented, i.e., whether the specified order
will not result in a runtime ordering that violates the required persist
order. We refer to the bugs that cause failure of recovery as crash
consistency bugs.

1.2 Challenges in Testing Crash Consistency

We argue that PM software developers will greatly benefit from a
testing framework that can help identify the improper use of low-
level primitives or high-level libraries, however, there are two major
challenges in developing such framework. First, while prior works
have developed tools to assist PM software development, they are all
specific to certain file systems [8] or user-space libraries [11]. These
tools rely on exhaustive search space exploration of all possible
ordering or binary instrumentation of the program, leading to a
significant performance overhead. For example, Yat [8], a tool that
tests Intel’s persistent memory file system (PMFS [2]) can take more
than 5 years to test all possible orderings in a trace with around
100k PM operations. In this work, we argue that an effective testing
tool needs to meet two requirements. First, the testing mechanism
needs to be fast so that programmers can reason about the durability
and ordering of the persistent operations and detect bugs in the
development phase. Second, the testing must support a myriad of
PM software that will be built with various architecture-specific
low-level primitives and high-level libraries. It also needs to support
different persistency models that order persists in various ways.
For example, Intel and ARM use a strict ordering of writes, while
recent academic proposals relax this ordering [7, 10]. In this work,
we propose PMTest, a crash consistency testing framework that is,
unlike prior work, both flexible and fast.

2 PMTest
2.1 Key Ideas

We implement PMTest on top of the following key ideas to overcome
these challenges.

Flexible. Our key idea is based on the observation that regardless
of the difference in PM software (kernel modules, or custom applica-
tions using architecture-specific low-level primitives or high-level
libraries), they all fundamentally rely on two types of operations to

provide the durability and ordering guarantees: to enforce persist-
ing a write and to enforce ordering between writes. Accordingly,
we propose two low-level checkers for testing crash consistency of
PM software: isPersist() and isOrderedBefore(), that check (1)
whether certain persistent objects have been persisted since their
last update and (2) whether a certain persist operation has been
ordered before another, enabling testing of the two fundamental
properties of any crash consistent PM software. Similar to asser-
tions, these two checkers can be instrumented in the code to expose
the ordering and durability of persistent operations to the software.
Moving forward, programmers can use the PMTest framework to
build custom, high-level checkers in the software based on the two
low-level checkers for different libraries and persistency models.
High-level checkers can automate the process of debugging PM soft-
ware built with PM libraries. We have developed high-level checkers
compatible with transactions in Intel’s PMDK [5] and an academic
work Mnemosyne [12]. Programmers only need to place a pair of
PMTest_START and PMTest_END around the transaction without re-
quiring any understanding about program implementation.

Fast. An effective testing tool is required to capture all interleav-
ings among persist operations, as writes may become persistent in
an order different from the original program order. The existing
method [8] exhaustively tests the correctness of recovery under
all possible interleavings. Instead of permuting all cases, PMTest
deduces an interval in which a write can possibly become persistent
based on a trace of PM operations (e.g., write, cache writeback and
fence). We refer to this interval as a persistence interval. An over-
lapping persistence interval for two write operations implies that
they are not strictly ordered, and the ending time of the interval
determines at what point in the program the write is guaranteed
to persist. Therefore, the persistence interval naturally captures all
reordering possibilities. Based on the persistence interval, PMTest
determines whether the conditions specified by the aforementioned
checkers (both low-level and high-level) are met, and thus detects
crash consistency bugs.

2.2 Implementation

@ | Checking Rules

Testing Results

Trace —— Result
o T p ‘ Track Checl.(mg /FAIL
> PM Ops @ Engine @<file>:<line>
L J L J
L} Y
Offline Online

Figure 2. A high-level view of PMTest (shaded components can be
customized by programmers).

Figure 2 briefly describes the high-level workflow of PMTest. The
procedure of testing a program consists of offline and online steps. In
the offline step, programmers annotate the software using low-level
and/or high-level checkers following the program specification of
the crash consistency mechanism (step @). For example, the low-
level checkers should be inserted to check the programmer intended
crash-consistent behavior and the high-level checkers for transac-
tions can be added by wrapping up the transactions. In the online
step, PMTest executes with the annotated and compiled software.
During execution, PMTest tracks PM operations and passes the trace
to the checking engine (step @). PMTest supports both user-space
programs and kernel modules by running the tracking module and
testing engine in separate processes. The checking engine tests
whether the trace meets the requirements specified by the checkers
(step ©). Upon identifying a crash consistency bug, PMTest reports
the buggy file name and line number for debugging. PMTest comes
with the checking rules for x86 systems and is extensible to other
hardware platforms.

3 Evaluation

We evaluate PMTest in two dimensions: (1) its capability of detecting
crash consistency bugs and (2) its runtime overhead in testing real-
world workloads.

Testing Capability. We evaluate the capability of PMTest bug
detection in two ways. First, PMTest detected 45 manually created
bugs (synthetic and reproduced from the commit history) in WHIS-
PER [10], a benchmark suite for PM. Second, PMTest detected 3
new bugs in a file system (PMFS) and applications developed using
a transactional library (PMDK). These bugs have been reported to
Intel and have been fixed with proper credit to PMTest [3, 4]. Fur-
ther, our experiments also reveal that PMTest checkers can help
programmers understand the persistency guarantees of PM libraries.

Testing Performance. We evaluate three real workloads: two
PM-optimized databases, Redis and Memcached, and a PM-optimized
file system, PMFS. Figure 3 shows the performance of these work-
loads running with PMTest. The y-axis shows the execution time
normalized to the original versions without any testing tool. The
slowdown from PMTest is between 1.33-1.98x. We conclude that
PMTest is efficient at testing real workloads.

= 2.00

£ 175 |

T 150 [—

1% | | — \ ﬁ

g 12 L | L | 1 |
Memcached Memcached Redis PMFS PMFS Average
+Memslap +YCSB +LRU +OLTP +Filebench

Figure 3. Performance of PMTest.

4 Conclusions

Developing crash consistent PM software is hard and error-prone.
As both the hardware and software support for PM is being devel-
oped, programming for PM software will be facing a variation in
hardware platforms and software libraries. Among different soft-
ware and hardware systems, the ordering and durability guarantees
may vary. Therefore, programmers are required to be experts on
both PM software and hardware systems. To the best of our knowl-
edge, PMTest is the first work that enables testing of PM software
ranging from user-space programs to kernel modules. And, PMTest,
as a testing framework, has reserved the extensibility for future
PM hardware and libraries. On the other hand, PMTest minimizes
runtime overhead in testing. Compared to Intel’s existing testing
tool, Pmemcheck [11], PMTest provides better testing capabilities
while performs 7.1x faster when testing workloads built on the
PMDXK library. Using PMTest, we have detected 3 new bugs in exist-
ing PM software, including a PM-optimized file system (PMFS) and
applications based on a transactional library in PMDK.

References

[1] Coburn et al. NV-Heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories. In ASPLOS, 2011.

[2] Dulloor et al. System software for persistent memory. In EuroSys, 2014.

[3] Intel. Btree: remove not needed snapshot (PMDK). https://bit.ly/367Jc1m, 2018.

[4] Intel. Btree: snapshot node before modifying it (PMDK). https://bit.ly/2BLZHCo,
2018.

[5] Intel. Persistent memory programming. https://pmem.io/, 2018.

[6] Intel. Revolutionary memory technology. https://intel.ly/31PvSLw, 2018.

[7] Kolli et al. Delegated persist ordering. In MICRO, 2016.

[8] Lantz et al. Yat: A validation framework for persistent memory software. In ATC,

2014.

Marathe et al. Persistent Memcached: Bringing legacy code to byte-addressable

persistent memory. In HotStorage, 2017.

Nalli et al. An analysis of persistent memory use with WHISPER. In ASPLOS,

2017.

[11] PMDK. An introduction to pmemcheck. http://pmem.io/2015/07/17/pmemcheck-

basic.html, 2015.

Volos et al. Mnemosyne: Lightweight persistent memory. In ASPLOS, 2011.

Xu et al. NOVA: A log-structured file system for hybrid volatile/non-volatile main

memories. In FAST, 2016.

[

[10

— =
L

https://bit.ly/367Jc1m
https://bit.ly/2BLZHCo
https://pmem.io/
https://intel.ly/31PvSLw
http://pmem.io/2015/07/17/pmemcheck-basic.html
http://pmem.io/2015/07/17/pmemcheck-basic.html

	1 Introduction
	1.1 Background in Persistence Programming
	1.2 Challenges in Testing Crash Consistency

	2 PMTest
	2.1 Key Ideas
	2.2 Implementation

	3 Evaluation
	4 Conclusions
	References

