

Error-Correcting WOM Codes for Worst-Case and Random Errors

Amit Solomon Yuval Cassuto

Technion – Israel Institute of Technology

11th Annual Non-Volatile Memories Workshop
University of California, San Diego
MARCH 8-10, 2020

Multi Level NVM

Writes in a Flash cell

- The main problem of Flash storage:
 - Cannot update data in place.
 - Major penalty in access speed and cell wear
- Reason: cell levels cannot be <u>decreased</u> without erasing a large data unit.
- WOM codes: Mitigate this problem [Rivest, Shamir '82]
 - Allow updating logical data multiple times, without decreasing physical cell levels
- Potential application: special SSD "hot zone"
 - File-system journals
 - FTL bypass, e.g. encryption keys, modem information

WOM code - Building Block

Example: (n = 2, q = 8, t = 4, M = 8)

Problem: Errors and WOM codes

- Memory cells suffer read/write errors
- Re-writing further degrades reliability due to inter-cell interference (ICI)
- Combining WOM codes with error-correcting (EC) codes (ECC) is non-trivial
 - we only have weak or non-practical ECC-WOM codes

WOM-ECC joint design

Design practical error-correcting WOM codes

- Low redundancy
- For common memory errors
 - Guaranteed error correction
 - 2. Random errors
- Any arbitrary number of errors τ

Prior work

- [Yaakobi, Siegl, Vardy, Wolf '12], [Zemor, Cohen '91] specific τ
- [Jiang, En-Gad, Langberg, Bruck '13] Polar codes, asymptotic block length

Challenge of combining WOM and ECC

Forward concatenation: error propagation

- **Example:** (n, q, t, M) **WOM**
 - Small errors in cell levels result in M ary errors
 - WOM is part of the channel

Concatenate ECC with special WOM codes

- ECC "sees" the WOM code as part of the channel
- Example of our special WOM codes
 - (n = 2, q = 8, t = 4, M = 8)
 - $k \in \{1,2,3,4\}$ write number
- Correction Guarantee!

EC-WOM construction for mag-1 errors

- Mag-1 error results in 4 ary error or erasure
- First correct 4 ary errors

EC-WOM construction for mag-1 errors

- Decoder knows correct 4 ary symbol and write number
- Looks for closet 4 ary symbol within same write region

Comparison of Constructions

■ Closed form $\forall \tau, N$ (approximate)

Construction	EC-Rate	Error Type	Alphabets
1	$1 - \frac{\frac{7}{8}(2\tau - 1)log_8(N)}{N}$	Any	8
2	$1 - \frac{\left(\frac{3}{4}(\tau - 1) + \frac{1}{2}(2\tau - 1)\right)log_8N}{N}$	mag-1	2,4
3'	$1 - \frac{\frac{1}{4}(6\tau_1 + 10\tau_2 - 5)log_8N}{N}$	$ au_1$ single mag-1, $ au_2$ general	4,2
4	$1 - \frac{\frac{3}{2}(3\tau - 2)log_8N + 2\tau - 1}{N}$	amag-1	2,2

EC-WOM codes for random errors

- Objective improve and analyze WOM error correction over realistic memory channels
- Multi level coding [Wachsmann, Fischer, Huber '99]
- High order symbols are mapped to multiple bits
- Main idea: propagate information from low to high bits
- Multi-stage decoding, WOM converts many errors to erasures

Erasures

Erasures: write number k = 3, bit number 1 i = 1 (LSB)

Erasures

Erasures: write number k = 3, bit number i = 2, first bit $b_1 = 0$

Errors

Errors: write number k = 3, bit number i = 2, first bit $b_1 = 0$

Error probability bound — AWGN example

- lacktriangle AWGN analysis, standard deviation σ
- Optimized redundancy distribution
- Code performance changes with write number k
- Propagation Index can predict WOM performance

Knowing the write number helps

 Comparison between decoders with/without writenumber information

Multi level coding soft decoding

- Channel output has additional reliability information
- Use soft BCH decoders: GMD [Forney '73]
- Reliability 1 Certain bit
- Reliability 0 Erasure
- Soft information with hard memory reads

1	1	1
1	(0)	1
1	1	1

Low reliability

High reliability

Multi level coding soft decoding - reliability

X

- Problem: order reliabilities of each physical state
- AWGN: non mag-1 errors are unlikely
- (m, n): m adjacent zeroes, n adjacent ones
- Lemma: order of reliabilities does not change for $\sigma < 0.341$

Publications

- A. Solomon and Y. Cassuto, "Error-Correcting WOM Codes: Concatenation and Joint Design", IEEE Transactions on Information Theory, 09/2019.
- A. Solomon and Y. Cassuto, "Error-Correcting WOM Constructions through Concatenation and Joint Design", IEEE International Symposium on Information Theory, ISIT 2018.

Summary

- WOM codes can help flash based memories
- Joint design of WOM and ECC codes improves reliability
 - Guaranteed error models
 - Random error models
- Also improves decoding complexity
- Can obtain soft information with hard memory reads

