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DNA-Storage
– Why?

Stability –
DNA can still recovered 
from 700,000 years old 
horse!



DNA-Storage –
Why?

Capacity –
DNA is extremely 
dense. 
109 GB /mm3

Cost decreasing –
DNA write (synthesis) and read 
(sequencing) costs are 
decreasing daily
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DNA Intro
• DNA consists of 4 bases, aka nucleotides:

Adenine     Cytosine            Guanine            Thymine

• DNA strand, aka oligonucleotide, is a string of the nucleotides

• C&G are complementary and A&T
• Each strand can bond its complementary strand 
• Two strands can bind if they are complementary 
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How to Write Data into DNA?
• Convert a binary sequence into a quaternary sequence
• = 00                = 01              = 10             = 11

• 01.00.11.10.00.00.01.10.11

• However…
• Strands are limited in their size (~200 bases)
• Strands are not ordered (a soup with many strands)
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How to Write Data into DNA?
• DNA Synthesis: artificially 

generating DNA strands
• Strands are generated by 

appending one base at a time
• Typical lengths are ~200 bases

(due to technology limitations)
• Each strand has thousands copies

• DNA Sequencing: reading DNA 
strands
• Generating many reads of each 

strand
• Less expensive and faster than 

synthesis (per base)
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How to Write Data into DNA?
• Parse the file to strings of 

bits
• Each string is converted to a 

DNA strand with index and 
primer 
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DNA Storage Channel Model
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DNA Storage Channel Model



DNA Storage Channel Model
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Clustering
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DNA Storage Channel Model

Reconstruction
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DNA Storage Channel Model

ECC



Errors in DNA

Synthesis

Mostly for chemical 
reasons

Each copy of a certain 
sequence has different 

errors

PCR

Creates a bias - prefers 
one sequence over 

another

Sequencing
Higher GC Content 
affects sequencing 

error

Presence of 
Homopolymers

increases the error rate
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Errors in DNA
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Error Characterization

DNA Strands
ACTG_GTCAGTGACGTGCATGCA
CTGAGATGTAGTGAGTGCAGCTT
TCGTGCAGTGATGCTCGTGCATGC

DNA Strands
ACTGGGTCAGTGACGTGCATGCA
CTGAGATGCAGTGAGTGCAGCTT
TCGTGCAGTGATGTCGTGCATGC

Substitution
Insertion
Deletion

ReadsVariantsEncode Decode



Error Characterization
Heckel, Mikutis, and Grass. A characterization of the DNA data storage channel. Scientific Report, 2019.  



Input
Synthetic DNA library:
- Design variants
- NGS results.

Step 0 -
Preprocessing

Filtering invalid 
sequences by their 
length.

Step 1 –
Clustering

Matching each read 
with its design variant.

Step 2 –
Alignment

Calculation the 
alignment path of each 
read vs. variant.

Step 3 –
Analysis

Characterization and 
analysis of the errors in 
the library.

Output
Quality report 
consisting of plots and 
statistical values

SOLQC Pipeline



SOLQC Pipeline
Input Preprocessing Matching Alignment Analysis

Matching
The set of reads 
which are 
matched to the 
same variant 
forms a variant 
cluster.

- Clustering



SOLQC Pipeline
Input Preprocessing Matching Alignment Analysis

Alignment

Every read is aligned according to its matched variant and 
an error vector is computed which represents the 
inferred error types at each position of the variant.



SOLQC Pipeline
Input Preprocessing Matching Alignment Analysis



SOLQC Pipeline
Input Preprocessing Matching Alignment Analysis

Analysis

The matched reads and their error vectors are used in 
order to create error characterization and data statistics 
for the library, as will be described in the sequel.



Yazdi et al.  Organick et al. Erlich & Zielinski Grass et al.  
3.633 KB200 MB (9.5 MB) 2.11 MB81KBStorage size

880-1,060 150 152 158Design length

17 607,150 72,000 5,000# variants

6,660 62,879,612 15,787,1153,312,235# reads

6,660 91,898 1,427,781 1,945,744# filtered reads

Synthesis

Sequencing 

Results
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Histogram of cluster size per variant
Erlich & Zielinski



Sorted bar plot of the number of 
filtered reads per variant

Erlich & Zielinski
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Organick et al.
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Yazdi et al.
Error rates, stratified by symbol

A C G T

Error rates in percent
Inserted Sym.

Sym. Pre-Ins. 

Substitution

1-Base Del.

Long Del.



Organick et al.
Error rates, stratified by symbol

A C G T

Error rates in percent

Inserted Sym.

Sym. Pre-Ins. 

Substitution

1-Base Del.

Long Del.



Cumulative distribution based upon the number of errors

Yazdi et al.

Organick et al. Yazdi et al.

Grass et al.Erlich & Zielinski



Histogram of the length of the reads
Erlich & Zielinski

Unfiltered Filtered



Error rates per position
Erlich & Zielinski

Organick et al. Yazdi et al.

Grass et al.



Error rates stratified by GC-content
Erlich & Zielinski

Organick et al. Yazdi et al.

Organick et al.



Error rates stratified by GC-content

Yazdi et al. 

Yazdi et al.

Grass et al.



Thank You!


