POSEIDON: Safe, Fast and Scalable Persistent Memory Allocator

Wook-Hee Kim, Anthony Demeri, R. Madhava Krishnan, Jaeho Kim*, Mohannad Ismail, Changwoo Min
Virginia Tech, *Gyeongsang National University

12TH ANNUAL NON-VOLATILE MEMORIES WORKSHOP

Background

Design Requirement of PM Allocator
- Transactional allocation
- Crash consistency of heap metadata.
- Protection of heap metadata from program errors.
- Scalability

Transaction allocation

Crash consistency of heap metadata.

Protection of heap metadata from program errors.

Scalability

The Case of PMDK

DRAM metadata
- Per-thread Arena
 - Locks
 - Free list

NVMM metadata and user data
- Heap metadata
- User data

NVMM metadata
- Chunk for small size allocation
- Global AVL tree of free chunks

Evaluation

POSEIDON significantly outperforms other persistent memory allocators up to $4 \times$.

POSEIDON shows better performance in YCSB evaluation (read-world evaluation).

Conclusion

Poseidon guarantees safety using Intel MPK
Poseidon’s per-CPU sub-heap design show better scalability