Thread-specific Database Buffer Management in Multi-core NVM Storage Environments
Tsuyoshi Ozawa, Yuto Hayamizu, Kazuo Goda, Masaru Kitsuregawa (UTokyo)

Summary
- Our preliminary experiment shows separated buffer mgmt. policy achieved over 1M IOPS on a real analytics database system

Introduction
- The emergence of high-performance NVM
 - 1M IOPS on single machine with NAND flash chip SSD / Optane

Database Buffer Management
- Buffer manager requires concurrency control
- Buffer management itself can be bottleneck

Experiment setup
- Workload
 - Modified TPC-H Query 3, scale factor 100
 - Buffer size: 1GB / Page size 16KB
- Buffer management policies
 - SHR (SHR-1, SHR-16, SHR-512) : shared buffer with 1/16/512 striped locks
 - SEP: separated buffer
- All buffer managers use GCLOCK

Machines for experiment

<table>
<thead>
<tr>
<th></th>
<th>NVMe flash machine</th>
<th>Optane machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>2x Xeon E5-2699 2.2GHz 22cores</td>
<td>2x Xeon E5-2699 2.2GHz 22cores</td>
</tr>
<tr>
<td>Memory</td>
<td>256GB</td>
<td>256GB</td>
</tr>
<tr>
<td>Storage</td>
<td>10x Intel DC P3700</td>
<td>10x Intel Optane DC 4800x</td>
</tr>
</tbody>
</table>

Experiment Results
- x6.37 faster query processing w/ SEP over SHR
- SEP achieves up to over 1.48 MIOPS (up to 98% device potential)

Experiment Results

| NVMe flash machine | Optane machine |

<table>
<thead>
<tr>
<th>Query execution time [sec]</th>
<th>IO throughput [MB/sec]</th>
<th>IO amount [GB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of threads</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion & Future work
- Our proposal (SEP) outperforms the baselines (SHR-*) to process a read-only query
- We will evaluate our systems with RW-mix queries and extend our study to explore lock-free techniques