
Fast, Flexible and Comprehensive Bug Detection
for Persistent Memory Programs

Bang Di
dibang@hnu.edu.cn
Hunan University

Jiawen Liu
jliu265@ucmerced.edu

University of California, Merced

Hao Chen
haochen@hnu.edu.cn

Hunan University
Dong Li

dli35@ucmerced.edu
University of California, Merced

1. Introduction

Programming persistent memory (PM) has been widely stud-
ied in many software systems. Those systems are expected to
recover to a consistent state and be able to resume execution in
the event of a failure. However, programming to build a crash-
consistent application for PM is challenging, because it must
enforce data to reliably reach persistence for data durability
and consider the order in which writes become persistent to
provide certain ordering guarantee.

Debugging PM programs to detect violation of data durabil-
ity and order guarantee often comes with large performance
overhead, which makes PM debugging too time-consuming
to comprehensively detect bugs (especially for those compli-
cated applications). For example, Pmemcheck [1] (an industry-
quality bug detector) and XFDetector [4] (a state-of-the-art
bug detector) introduce 218x slowdown (two hours) and 1000x
slowdown (nine hours) respectively to application execution,
when debugging a PM-aware real workload, memcached with
1M persist operations (i.e., the acts of making cache lines
persistent). Such large performance overhead not only comes
from instrumentation of memory store, cache writeback and
memory fence, in order to reason about the durability and
ordering of persist operations; The overhead also comes from
bookkeeping and updating persistency status of PM locations,
which often dominates total overhead. In particular, whenever
there is a store instruction, the debugger tool records which
PM location has been modified; Whenever there is a cache
writeback or fence, the debugger searches the records of PM
locations to update the persistency status. Given a program
with a large number of store, cache writeback and fence, fre-
quent bookkeeping and expensive searching is the main reason
accounting for time-consuming PM debugging.

To reduce performance overhead, some debuggers such
as PMTest [5] avoid comprehensive examination of persist
operations. They heavily rely on the programmer to intensively
add assertion-like checkers into the program to selectively test
durability and ordering guarantee. Furthermore, to support
debugging for a persistency model, this method requires the
programmer to introduce new checkers into each program
and re-annotate it. Adding checkers requires the programmer

have deep understanding on application semantics, persistency
model, and hardware primitives employed in the model, which
imposes heavy burden on the programmer. As a result, this
method has limited bug coverage (or comprehensiveness),
which means some bugs cannot be detected because of the
lack of programmer-added checkers.

In conclusion, debugging PM programs faces a fundamental
tradeoff between performance overhead and comprehensive-
ness. Large performance overhead or limited bug coverage
makes debugging ineffective or even infeasible for PM pro-
grams. In this paper, we propose PMDebugger, a tool to detect
crash consistency bugs. By considering PM program charac-
terization, PMDebugger enables high-performance debugging
without losing bug coverage. PMDebugger is fast, flexible and
comprehensive for bug detection, discussed in Section 3.

Evaluation. Our evaluation results show that PMDebugger
leads to 49.3x and 3.4x speedup on average, compared with
state-of-the-art solutions, XFDetector and Pmemcheck. Com-
pared with another state-of-the-art detector (PMTest) which is
optimized for high performance, PMDebugger achieves com-
parable performance. PMDebugger identifies 78 synthetic or
reproduced bugs (ten bug types in total), while XFDetector,
Pmemcheck and PMTest identify 65 (six bug types), 55 (four
bug types) and 61 bugs (five bug types) respectively. More
importantly, PMDebugger detects 19 new bugs in a real appli-
cation (memcached) and two new bugs from Intel PMDK (the
two bugs are confirmed by Intel.

The paper is accepted into the prestigious conference ASP-
LOS’21 1, and will be open-sourced.

2. Characterization of PM Programs

The existing PM debuggers largely ignore PM program char-
acterizations, and hence have a mismatch between the design
of data structures and algorithms for debugging, and PM pro-
gram patterns. Such a mismatch leads to inefficient debugging
mechanisms. We abstract three fundamental components from
the PM program: memory store, cache writeback (e.g., cache

1The full paper was accepted in the 26th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), 2021.
http://pasalabs.org/papers/2021/asplos21_pmdebugger_full_paper.pdf

mailto:dibang@hnu.edu.cn
mailto:jliu265@ucmerced.edu
mailto:haochen@hnu.edu.cn
mailto:dli35@ucmerced.edu


line flushing or CLF) to enforce durability, and memory fence
to provide ordering guarantee. We partition the stream of the
three components collected from PM programs, and define
that stores between two neighbouring CLFs form a CLF inter-
val. We characterize how the three components are interleaved
and distributed in typical PM programs, which motivates our
debugger. We refer to the interleaving and distribution of
the three components in a PM program, as the PM program
pattern. We find three patterns.
• Pattern 1: For most stores, the data durability is guaranteed

by the nearest fence;
• Pattern 2: Memory locations updated in a CLF interval are

highly likely to be persisted together by the same single
CLF;

• Pattern 3: Store happens more frequently than CLF and
fence.
Pattern 1 gives us critical information on how to store and

organize information for memory locations. The traditional
debugger such as Pmemcheck, PMTest and XFDetector or-
ganizes memory locations based on their addresses into a
tree-like structure, for the convenience of searching records
(for handling CLF) and deleting records (for handling fence).
This method, however, comes with the overhead of tree re-
organization (e.g., merging and balancing). This overhead
must be overweighed by the performance benefits brought
by tree reorganization. The performance benefit comes from
faster search and deletion. However, the pattern 1 tells us
that the bookkeeping mechanism such as tree re-organization
cannot be paid off very well for many memory locations, be-
cause once the nearest fence happens, the information for the
memory locations is deleted, giving few opportunity to gain
performance benefit in the long term. On the other hand, we
see some memory locations survive multiple fences, showing
the potential of using the tree-like structure.

Pattern 2 gives us critical information on whether it is
promising to collectively maintain and update persistency sta-
tus of memory locations. Collective processing enables fast
query on status of memory locations, but can bring large per-
formance benefit only when the persistency status of many
memory locations can be collectively maintained. Pattern 2
shows us such potential.

Pattern 3 highlights the importance of efficiently processing
memory store, because of its frequent occurrences.

3. Design
Figure 1 provides a high-level view of PMDebugger.

PMDebugger is fast. It enables high-speed debugging by
introducing a highly efficient bookkeeping and updating mech-
anism. This mechanism is driven by the characterization study
results (i.e., the three patterns). This mechanism includes
two optimization techniques: (1) collectively managing status
of memory locations, and (2) using a hybrid data structure
for bookkeeping. Using (1), PMDebugger is able to greatly
accelerate deletion of records when processing fence, and up-

Store 
instruction Update

metadataInsert info

Writeback
instruction

Memory location array

AVL tree

Update
metadata

Update 
persistency
status

Fence 
instruction

Invalidate 
metadata

Re-distribute 
or delete info

Figure 1: The design of PMDebugger.

dating the records when processing cache writeback. For (2),
PMDebugger combines an AVL tree and an array. Leveraging
the strength of each data structure, PMDebugger splits and
distributes the records into the two, based on the record life-
time, frequency of operations, and overhead of data structure
maintenance. With the consideration of the program charac-
terization, PMDebugger is able to break the tradeoff between
performance overhead and bug coverage.

PMDebugger is flexible. Built upon the data structures and
optimization techniques customized to the PM debugging,
PMDebugger introduces highly efficient operations for PM
debugging, such as updating persistency status of memory lo-
cations and deleting their records. These debugging operations
bring foundation to efficiently process the three fundamental
components, based on which PMDebugger allows the user
to introduce any rule for bug detection and implement high
performance debugging. In essence, PMDebugger uses a hi-
erarchical design composed of PM debugging-specific data
structures, operations, and bug-detection algorithms (rules).

Given the flexibility provided by PMDebugger, we gener-
alize nine rules to detect bugs for various persistency models.
Among the nine, four of them are unique to the emerging
relaxed persistency models [3].

PMDebugger is comprehensive for bug detection. Its com-
prehensiveness comes from its much shorter execution time
than the existing PM debugger tools, which allows PMDebug-
ger to thoroughly examine instructions; Its comprehensiveness
also comes from its capability to detect various bugs for vari-
ous persistency models. Using PMDebugger, we are able to
identify bugs not identifiable by the existing tools [1, 2, 4, 5].

References
[1] Intel Corporation. An introduction to pmemcheck. https://pmem.io/
2015/07/17/pmemcheck-basic.html, 2015.

[2] Intel Corporation. Detect persistent memory programming errors
using persistence inspector. https://software.intel.com/content/
www/us/en/develop/articles/detect-persistent-memory-
programming-errors-with-intel-inspector-persistence-
inspector.html, 2020.

[3] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Relaxed persist ordering
using strand persistency. In ISCA, 2020.

[4] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas F. Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-failure bug detection in persis-
tent memory programs. In ASPLOS, 2020.

[5] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Man-
abi Khan. Pmtest: A fast and flexible testing framework for persistent
memory programs. In ASPLOS, 2019.

2

https://pmem.io/2015/07/17/pmemcheck-basic.html
https://pmem.io/2015/07/17/pmemcheck-basic.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html

	Introduction
	Characterization of PM Programs
	Design

