
CoSpec: Compiler Directed Speculative Intermittent Computation

Jongouk Choi
Purdue University

choi658@purdue.edu

Qingrui Liu
Annapurna Labs

qingrui@amazon.com

Changhee Jung
Purdue University

chjung@purdue.edu

1 INTRODUCTION
Energy harvesting systems continue to grow at a rapid pace due to
their batteryless nature. However, since ambient energy source is
unreliable, the systems suffer frequent power failure. To address the
challenge, they use a small capacitor as an energy buffer and intermit-
tently compute only when sufficient energy is secured in the capaci-
tor; when it is depleted, the systems die. This is so-called intermittent
computation. With the intermittent nature in mind, researchers adopt
a low-power in-order processor with byte-addressable nonvolatile
memory (NVM) as main memory and offer a crash consistency
mechanism to checkpoint necessary data and restore them across
power outages.

For the crash consistency, prior works introduce a nonvolatile
processor (NVP) [5] that checkpoints volatile registers to nonvolatile
flip-flops (NVFFs)—when it is about to be interrupted by power
failure—and restores the checkpointed registers from NVFFs in the
wake of power failure. Since the NVP restarts exactly at the power
interruption point, program states in both NVM and NVFF remain
the same across power failure, thereby achieving crash consistency.

Unfortunately, the NVP requires non-trivial hardware modifi-
cations. To checkpoint the entire register file right before power
failure, they require not only the NVFFs but also a voltage monitor,
checkpoint/controller logic, and additional capacitors for the moni-
tor itself. Even worse, the voltage monitor has stability issues such
as excessive leakage or capacitor aging effects leading to reduced
capacitance and voltage detection delay with unexpected cold-start
glitch. To mitigate the issues, the prior NVP works aggressively
increase the voltage threshold of the system wake-up/backup, which
is energy-inefficient due to the inability to make forward progress
unless such a high voltage is secured to wake up the system.

With that in mind, we propose CoSpec, an architecture/compiler
co-design scheme that can realize low-cost yet performant intermit-
tent computation for commodity in-order processors used in energy
harvesting systems. To realize crash consistency without the voltage
monitor based checkpointing, CoSpec leverages speculation assum-
ing that power failure would not occur and thus hold all committed
stores in a store buffer (SB)—as if they were speculative—in case
of mispeculation; we call this power failure speculation. CoSpec
compiler first partitions a given program into a series of recoverable
regions with the SB size in mind, so that no region overflows the
SB during the region execution. When the program control reaches
the end of each region, the speculation turns out to be successful;
therefore, CoSpec releases all the stores of the region, which have
been buffered in the SB, to NVM.

If power failure occurs during the execution of a region, all its
stores buffered in the SB disappear because it is volatile. The impli-
cation is that such mispeculated stores—left behind power failure—
cannot affect any program state in NVM at all. Consequently, the
interrupted region can be restarted with consistent program states in
the wake of power failure.

While CoSpec provides crash consistency, the region-based spec-
ulation window causes pipeline stalls at the end of each region due
to the SB release. Since it consists of NVM writes that are the
most time-consuming instruction, the stalls are rather long lead-
ing to a significant performance overhead. To hide the long NVM
write latency of the SB release, CoSpec overlaps the SB release
of the current region with the speculative execution of the next re-
gion. Such instruction level parallelism (ILP) gives an illusion of
out-of-order execution on top of the in-order processor, achieving
high-performance intermittent computation.

2 HARDWARE DESIGN
Store Buffer for Power Failure Speculation: Since CoSpec imple-
ments the power failure speculation in a region level, all stores of
each region must be buffered, which would otherwise fail to recover
from mispeculation. For this purpose, CoSpec leverages the store
buffer (SB) to hold committed stores of each recoverable code region
during its execution—since they are treated as speculative—until
the program control reaches the end of the region (i.e., the region
boundary) where the speculation turns out to be successful and thus
all the buffered stores are released. This speculation approach never
allows the stores of any regions being interrupted by power failure
to be written to primary main memory (NVM). The takeaway is
that with the help of such a gated store buffer [4], speculative stores
cannot be released to NVM until they become non-speculative, i.e.,
their region finishes without power failure.
Failure-Atomic 2-Phase SB release: As the major challenge in
achieving correct crash consistency, CoSpec should maintain failure
atomicity of the SB draining; otherwise, when power failure occurs
during the SB release, the resulting partial draining can make it
impossible to recover from the failure. To overcome the challenge,
CoSpec conducts a 2-phase SB release mechanism, i.e., first draining
the SB entries—held by stores of each finished region—to a proxy
buffer allocated in NVM and then copying them to the primary main
memory area in NVM according to their store address. That way,
either the buffer or the primary main memory can always be intact
no matter when power is lost.

In particular, CoSpec splits the SB into two parts to enable in-
struction level parallelism. During the program execution, any two
consecutive recoverable code regions exclusively occupy one of the
two parts in the SB. That is, each code region—statically partitioned
by CoSpec compiler—commits its stores to a different part of the SB
at run time. When the program control reaches each region boundary,
CoSpec drains to NVM only the stores in the part of the SB which
is used by the region being finished, using the 2-phase SB release.

3 COMPILER DESIGN
To partition the program into a series of recoverable regions, CoSpec
compiler first counts the number of stores while traversing the con-
trol flow graph (CFG) of the program [4]. When the number of stores



The original article [1] was presented in MICRO’19, Columbus, Ohio, USA Jongouk Choi, Qingrui Liu, and Changhee Jung

hits a threshold, i.e., a half the SB size, CoSpec compiler cuts the
current basic block—where the last store is counted—by placing
a region boundary. Then, the compiler analyzes the live-out regis-
ters of the resulting region—because they serve as inputs to some
following regions—and inserts a checkpoint instruction, i.e., store,
to save them into a designated register file (RF) checkpoint storage
in NVM. This implies that the recovery of any power-interrupted
region should first restores the checkpointed registers before restart-
ing the region. In particular, the compiler saves a PC register at the
end of each region—which serves as a recovery point—so that if
the forthcoming power failure occurs in the next region, it can be
recovered by restarting from the beginning.

1 2 3

CPU

Drain

Final CopyTrigger

Region Boundary

Program Execution

Phase.1 Phase.2

SB
SB

1 2 3

RF checkpoint storage

Figure 1: Failure-Atomic 2-Phase Gated Store Buffer Release

4 ARCHITECTURE/COMPILER CO-DESIGN
CoSpec hardware interacts with compiler-formed regions as follows.
When the program control reaches the end of each region, CoSpec
first drains the buffered stores to a proxy buffer allocated in NVM
and in turn moves the drained data from the buffer to the primary
main memory in NVM. Thanks to the HW-compiler interaction,
CoSpec can not only leverage an existing hardware as is—which
would otherwise require expensive hardware modification—but also
achieve better energy efficiency compared to hardware-only solu-
tions such as NVPs that should checkpoint the entire register file at
the moment of impending power failure.

Figure 1 describes how CoSpec’s hardware, i.e., the gated store
buffer, interacts with the termination of a compiler-formed recover-
able region using the 2-phase SB release protocol. First, the system
(❶) triggers the SB release when each region boundary is reached
during the program execution. Then, CoSpec (❷) drains one part of
SB—which corresponds to the region being finished—to the proxy
buffer in NVM. As soon as the draining is completed, CoSpec (❸)
copies all the buffered data to primary main memory locations.

5 ILP FOR OPTIMIZING 2-PHASE RELEASE
The 2-phase SB release mechanism causes additional NVM writes.
Unfortunately, this incurs significant performance degradation. To
address this problem, CoSpec optimizes the 2-phase SB release by
enabling instruction level parallelism (ILP). More precisely, CoSpec
does not wait until its 2-level SB release is finished; rather it specu-
latively executes the next region’s instructions while the SB release
is pending. As soon as the SB draining starts, which is shown as the
step ❷ in Figure 1, CoSpec speculatively executes the next instruc-
tions using the other part of SB in case for stores. By overlapping the
NVM writes during entire 2-phase SB release with the speculative

execution of the next code region, CoSpec is able to make further
forward execution progress—committing more instructions—than
a non-ILP execution does. Note that the use of ILP optimization
and the region-level speculation window may increase power con-
sumption compared to non-modified design, possibly causing more
power failures. To address this issue, CoSpec adaptively turns on/off
the ILP and adjusts the speculation window according to the power
failure patterns in a reactive manner [1].

6 EVALUATION
We implemented the hardware support on a gem5 simulator [2] with
ARM ISA, and the compiler techniques using the LLVM compiler
infrastructure [3]. All the experiments were performed with a real en-
ergy harvesting trace collected from RF reader that suffers frequent
power failures. We compared CoSpec to the prior work, nonvolatile
processor (NVP) [5], in terms of completion time, for a mixture
of MediaBench and MiBench applications. As shown in Figure 2,
CoSpec outperforms the NVP by 3.0X on average.

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic
g7

21
de

co
de

g7
21

en
co

de
gs

m
de

co
de

gs
m

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
pe

gw
itd

ec
ry

pt
pe

gw
ite

nc
ry

pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es
gm

ea
n(

M
ed

ia
)

ba
sic

m
at

h
bi

tc
ou

nt
rij

nd
ae

l_e
pa

tri
cia

st
rin

gs
ea

rc
h

qs
or

t
cr

c3
2

FF
T

FF
T_

i
gm

ea
n(

M
i)

gm
ea

n(
To

ta
l)

103
104
105
106
107
108
109

1010
1011

Co
m

pl
et

io
n

Ti
m

e 
(n

s)
Off-time
On-time
Off-time
On-time

Figure 2: Completion time comparison. The 1st/2nd bars of
each application represent NVP and CoSpec, respectively.

7 SUMMARY
This paper presents CoSpec, an architecture/compiler co-designed
scheme, that can work for commodity in-order processors, to achieve
low-cost yet performant intermittent computation. CoSpec realizes
instruction level parallelism on top of the in-order processor pipeline
to hide the long latency of nonvolatile memory writes, thereby im-
proving the performance significantly. Our experiments on a real
energy harvesting trace with frequent power outages demonstrate
that CoSpec outperforms the state-of-the-art nonvolatile processor
across a variety of benchmark applications by 3X on average.

REFERENCES
[1] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler Di-

rected Speculative Intermittent Computation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 399–412.

[2] Nathan Binkert et al. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News
39, 2 (Aug. 2011).

[3] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO ’04). IEEE Computer
Society, Washington, DC, USA, 75–.

[4] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwarit. 2016. Low-cost
soft error resilience with unified data verification and fine-grained recovery for
acoustic sensor based detection. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–12.

[5] Fang Su, Yongpan Liu, Yiqun Wang, and Huazhong Yang. 2017. A Ferroelectric
Nonvolatile Processor with 46µ s System-Level Wake-up Time and 14µ s Sleep
Time for Energy Harvesting Applications. IEEE Transactions on Circuits and
Systems I: Regular Papers 64, 3 (2017), 596–607.


	1 Introduction
	2 Hardware Design
	3 Compiler Design
	4 Architecture/Compiler Co-Design
	5 ILP for Optimizing 2-Phase Release
	6 Evaluation
	7 Summary
	References

