SuperMem: Enabling Application-transparent Secure Persistent Memory with Low Overheads

Pengfei Zuo\(^1,2\), Yu Hua\(^1\), Yuan Xie\(^2\)

\(^1\) Huazhong University of Science and Technology, China
\(^2\) University of California at Santa Barbara, USA

Background

- **Persistent memory as main memory**
 - PCM, ReRAM, STT-RAM, 3D-Xpoint
 - High scalability, high density, and low standby power

- **Persistence issue**
 - Crash inconsistency

- **Security issue**
 - Physical-access attacks
 - username, password

- **Consistency guarantee**
 - Cache line flush (cflush)
 - Memory fence (mfence)
 - Logging
 - Copy-on-write

- **Memory encryption**
 - Counter mode encryption

- **The gap between persistence and security**
 - *cflush* and *mfence* cannot operate the counter cache
 - Data and counter cannot reach NVM in the same time

The SuperMem Design

- **SuperMem: an application-transparent secure persistent memory by leveraging a write-through counter cache.**

 - **A write-through counter cache**
 - No large battery backup
 - No software-level modifications
 - No need to correct counters

 - **Counter write coalescing**
 - Reduce the number of writes

 - **Cross-bank counter storage**
 - Speed up memory writes

Evaluation

- **Evaluation: 256KB transaction size**
 - Array
 - Queue
 - Btree
 - Hash Table
 - RB-tree

- **Evaluation: 4KB transaction size**
 - Same as above

Comparisons

- UnSec: An un-encrypted NVM
- WB: A ideal write-back scheme
- WT: A write-through scheme
- WT+CWC: A write-through scheme with CWC
- WT+XBank: A write-through scheme with XBank

The SuperMem Design

- **Write-through counter cache**
 - Ensure that data and its counter reach the write queue in the same time

- **Cross-bank counter storage (XBank)**
 - Ensure that data and its counter reach the write queue in the same time

Existing solutions (write-back counter cache)

- **Large Battery Backup**
 - [Awad et al., ASPLOS’16]
 - Expensive
 - Counter cache
 - Limited portability

- **Software-level Modification**
 - [Liu et al., HPCA’18]
 - New programming primitives
 - CounterAtomic
 - Portable

- **Error Correction**
 - [Ye et al., MICRO’18]
 - Low recovery time

Counter Cache

- Updated Counter

CPU Cache

- Encrypted Data

Normative Execution Latency

- Array
- Queue
- Btree
- Hash Table
- RB-tree

Comparisons

- UnSec: An un-encrypted NVM
- WB: A ideal write-back scheme
- WT: A write-through scheme
- WT+CWC: A write-through scheme with CWC
- WT+XBank: A write-through scheme with XBank

SuperMem

NVMW 2021