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Abstract—This paper considers coding for partially stuck mem-
ory cells. Such memory cells can only store partial information
as some of their levels cannot be used due to, e.g., wearout. First,
we present a code construction for masking such partially stuck
cells while additionally correcting errors. Second, we derive a
sphere-packing and a Gilbert-Varshamov bound for codes that
can mask a certain number of partially stuck cells and correct
errors additionally. A numerical comparison between the new
bounds and our constructions for any u partially stuck cells ≤ n
memory cells shows that our construction matches the Gilbert–
Varshamov-like bound for several code parameters.

Index Terms—flash memories, phase change memories, non-
volatile memories, defective memory, (partially) stuck cells,
sphere packing bound, Gilbert-Varshamov bound

I . I N T R O D U C T I O N

The demand for reliable memory solutions and in particular
for non-volatile memories such as phase-change memories
(PCMs) for different applications is steadily increasing. These
multi-level devices provide permanent storage and a rapidly
extendable capacity. The key characteristic of PCM cells is that
they can switch between two main states: an amorphous state
and a crystalline state. PCM cells may become defect (also
called stuck) if they fail in switching their states. Therefore,
cells can only hold a single phase [3], [4]. In multi-level PCM
cells, failure may occur at a position in either of extreme states
or in the partially programmable states of crystalline. In [1],
a cell that can only hold levels at least a certain reference
level s > 0 is called partially stuck. For multi-level PCMs,
the case s = 1 is particularly important since this means that
a cell can reach all crystalline sub-states, but cannot reach the
amorphous state. Similar to PCMs, (partial) defects can occur
in flash memory cells. In order to write information in a new
write, either all current levels are only increased or a whole
block has to be erased. Erasing the whole block reduces the
lifespan of the flash memory device. The suggested mechanism
to deal with these defective memory cells is called masking.
Masking determines a codeword that matches the stuck level
of the stuck memory. Therefore, it can be stored properly in
the defective memory.

I I . R E L AT E D W O R K

In [2], code constructions for masking stuck memory cells
were proposed. In addition to masking the stuck cells, it is
possible to correct errors that occur during the storing and
reading processes. A generator matrix of a specific form was
constructed for this purpose. In [1], improvements on the
redundancy necessary for masking partially stuck cells are
achieved, and lower and upper bounds are derived. However,
the paper does not consider error correction in addition to
masking. In this paper, we combine the method of the reduced
redundancy necessary for masking from [1] with the capability
to correct additional errors from [2].

I I I . P R E L I M I N A R I E S

A. Notations

For a prime q, let Fq denote the finite field of order q.
Denote [f ] = {0, 1, . . . , f − 1} for f ∈ Z>0. Let n be
the total number of cells, u be the number of partially stuck
cells, and t be the number of random errors. Let sφi denote
the partially stuck level at position i, where i ∈ [u], and
φ = {φ0, φ1, · · · , φu−1} ⊆ [n] denotes the positions of the the
partially stuck cells. For our construction, let k1 be the number
of information symbols, l be the number of symbols required
for masking, and r be the required redundancy for error correc-
tion. Let ζ(n, d⊥0 , q) := n−blogq(

∑d⊥0 −2
j=0

(
n−1
j

)
(q−1)j)c−1

and ξ(n, hq(δ
⊥
0 ), ε) := (1 − hq(δ⊥0 ) − ε)n, where δ⊥0 =

d⊥0
n

is the relative distance and its value 0 ≤ δ⊥0 < 1 − 1
q

while d⊥0 is the dual minimum distance of the code C⊥0 ,
0 < ε < 1−hq(δ⊥0 ), and hq(δ⊥0 ) is the q-ary entropy function.
We use ζ(n, d⊥0 , q) and ξ(n, hq(δ⊥0 ), ε) in Theorem 3 to prove
the existence of an error correcting and masking code.

B. Definitions

1) Partially Defective Cells: A cell is called partially defect
(partially stuck at level s), where s ∈ [q], if it can only store
values which are at least s. If a cell is partially stuck at 0, it
is a non-defect cell which can store any of the q levels.

2) (u, t)-PSMC: An (n,Mu,t)q (u, t)-partially-stuck-at-
masking code C is a coding scheme consisting of an encoder
E and a decoder D. The inputs of the encoder E are: the set of
locations of u partially stuck cells φ, the partially stuck levels
sφ0 , sφ2 , . . . , sφu−1 ∈ [q], and a message m ∈ Mu,t, where
Mu,t is a message space of cardinality |Mu,t|. It outputs a
vector c ∈ Fnq which fulfills cφi

≥ sφi
for all i ∈ [u]. The

decoder is a mapping that takes c+e ∈ Fnq as input and returns
the correct message m for all error vectors e of Hamming
weight at most t.

I V. C O D E S F O R ( PA R T I A L LY ) D E F E C T I V E
M E M O R I E S

Construction 1. Let n, u, t, k, k1, r, l be positive integers with
u, t ≤ n, k1 = n − l − r and k = k1 + l. Suppose that
there are matrices P ∈ Fk1×rq and H0 ∈ F(n−k1−r)×n

q is a
systematic parity-check matrix of a code C0 with parameters
[n, k1 + r, d0 ≥ u− q + 3]q , such that

G =

[
G1

H0

]
=

[
0k1×l Ik1 P k1×r

H0

]
is a generator matrix of a [n, k = l+ k1, d ≥ 2t+ 1]q code C.

Based on these definitions, we define a coding scheme in
Algorithm 1 and Algorithm 2.

Theorem 1. The coding scheme in Construction 1 is a (u, t)-
PSMC with sφi

= 1 of length n and cardinality Mu,t = qk1 .

The proof is similar to the proof of [1, Theorem 8] for the
masking only that uses H0 whose r = 0. In contrast, since



Algorithm 1: Encoding

Input: Message: m = (m0,m1, . . . ,mk−1) ∈ Fk1q
and φ

1 Find z = (z0, z1, · · · zl−1) ∈ Fq as explained in the
proof of [1, Theorem 7]

2 Compute c = ((m ·G1) + (z ·H0)) mod q
Output: Codeword c ∈ Fnq

Algorithm 2: Decoding
Input: y = c+ e ∈ Fnq

1 ĉ← decode y in the code C
2 Unmasking Process:

• ẑ ← (ĉ0, ĉ1, · · · ĉl−1)
• ŵ = (ŵ0, ŵ1, · · · , ŵn−1)← (ĉ− ẑ ·H0) mod q
• m̂← (ŵl, ŵl+1 . . . , ŵn−r−1)

Output: Message vector m̂ ∈ Fk1q

Construction 1 is capable to correct errors, r 6= 0.
In summary, Algorithm 1 encodes the message m into a
codeword of the code C such that all u partially-stuck positions
are ≥ 1 (i.e., masked). Algorithm 2 then corrects up to t errors
using the code C and recovers the message vectors. This means
that the coding scheme is a (u, t)-PSMC.

V. B O U N D S O N T H E C A R D I N A L I T Y A N D M I N I M U M
D I S TA N C E

A. Sphere-Packing Bound on PSMCs

Theorem 2. Any (u,t)-PSMC over Fq of cardinality Mu,t

satisfies:
• for non-overlapping, i.e., the errors are only allowed to

happen at positions Ψ = {Ψ0,Ψ1, . . . ,Ψn−u−1} = [n]\
φ, then we have:

Mu,t ·
t∑

j=0

(
n− u
j

)
(q − 1)j ≤ qn−u

u−1∏
i=0

(q − sφi
),

• for overlapping, i.e., the errors are allowed to happen in
any cell, i.e., Ψ ⊆ [n] under the assumption that sφi

<
q − 1, for i = 0, . . . , u− 1, then we have:

Mu,t ·
t∑

j=0

j∑
j1=0

(
n−u
j1

)
(q − 1)j1

(
u

j−j1

) ∏
i∈J

(q − 1− sφi
)

≤ qn−u
u−1∏
i=0

(q − sφi),

where J denotes the set of cardinality j − j1 of stuck
cells that is affected by errors.

B. Gilbert–Varshamov Bound on PSMCs

Theorem 3 (Gilbert-Varshamov-like bound). Suppose there
are positive integers u, t, n, d⊥0 ≥ d ≥ 2t+ 1, d0 ≥ u− q+ 3,
l ≤ k − 1, and q ≥ 2 that satisfy:

ql+1 ·
2t∑
i=0

(
n

i

)
(q − 1)i ≤ qn,

qn−l+1 ·
u−q+2∑
j=0

(
n

j

)
(q − 1)j ≤ qn,

qk ·
2t∑
i=0

(
n

i

)
(q − 1)i ≤ qn.

Then, there is an [n, k,≥ 2t+ 1]q code C that has a subcode
C⊥0 [n, l]q whose dual distance is d0 ≥ u− q + 3.
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Figure 1. Sphere-packing bounds: Comparison for k(q, n) information
symbols for the classical sphere-packing bound ("only errors") and our sphere-
packing-like bounds ("errors and stuck cells") for non-overlapping and over-
lapping errors. The chosen parameters are q = 3, and n = (q5− 1)/(q− 1).

First, we use a probabilistic argument for the GV bound
as in [5] to prove that the code C⊥0 of parameters [n, l, d⊥0 ]q
generated by a matrix H0 ∈ Fl×nq whose dual code C0 of
minimum distance d0 ≥ u − q + 3 simultaneously exists.
Second, we need to show that we can extend C⊥0 to obtain a
code C of parameters [n, k, d]q generated by a full rank matrix
of larger dimension l+1 ≤ k so that we apply the method given
in [5] with a suitable adaptation which is a restricted version
for linear codes from the suggested method in [6] to extend
C⊥0 . If ξ(n, hq(δ⊥0 ), ε) < ζ(n, d⊥0 , q), then ∃ (u, t)-PSMC with
dimension k − l =

⌈
ζ(n, d⊥0 , q)

⌉
+ 1 − bξ(n, hq(δ⊥0 ), ε)c as

illustrated in Figure 2.
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Figure 2. Comparisons of bounds of our new GV-Like-Bound for n = 120
and q = 7. It shows there exist error correcting and masking codes that
satisfy GV bound starting after a certain dimension (k = 9) and particular
minimum distance (d = 81). For this plot, 9 ≤

⌈
ζ(n, d⊥0 , q)

⌉
+ 1 ≤ 116

while 0 ≤ bξ(n, hq(δ⊥0 ), ε)c ≤ 110.
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