Systematic Single-Deletion Multiple-Substitution Correcting Codes

Wentu Song,¹ Nikita Polyanskiiy,² Kui Cai,¹ and Xuan He¹

¹Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore
²Technical University of Munich, Germany, and Skolkovo Institute of Science and Technology, Russia

12TH ANNUAL NON-VOLATILE MEMORIES WORKSHOP, UCSD, MARCH 2021
Applications of deletion, insertion and substitution correcting codes: DNA data storage, file synchronization.
1. Introduction

- **Redundancy of a code:** \(r(C) = n - \log |C| \), where \(n \) is the length of \(C \).

- **Systematic code:**

 \[\begin{align*}
 x & \mapsto (x, p) \\
 \end{align*}\]

- **Bounds on the optimal redundancy** \(r_{opt} \) of \(t \)-deletion correcting codes [1]:
 \[
t \log n + o(\log n) \leq r_{opt} \leq 2t \log n + o(\log n).
 \]

- **Varshamov-Tenengolts (VT) codes,** a family of asymptotically optimal **single**-deletion correcting codes:

 For each \(a \in \{0, 1, 2, \ldots, n\} \),

 \[VT_a(n) = \left\{ (x_1, x_2, \ldots, x_n) \in \{0, 1\}^n : x_1 + 2x_2 + \ldots + nx_n \equiv a \mod (n + 1) \right\}. \]

1. Introduction

- t-deletion correcting codes for \(t > 1 \):

<table>
<thead>
<tr>
<th>Construction in</th>
<th>Redundancy</th>
<th>Encoding/Decoding Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levenshtein [1], [2]</td>
<td>(r \leq 2t \log n)</td>
<td>(O(n^{2t}2^n))</td>
</tr>
<tr>
<td>Brakensiek – Guruswami - Zbarsky [2]</td>
<td>(r \leq O(t^2 \log t \log n))</td>
<td>(O(n \log^4 n))</td>
</tr>
<tr>
<td>Sima - Bruck[3]</td>
<td>(r \leq 8t \log n + o(\log n))</td>
<td>(O(n^{2t+1}))</td>
</tr>
<tr>
<td>Sima – Gabrys – Bruck [4]</td>
<td>(r \leq 4t \log n + o(\log n))</td>
<td>(O(n^{2t+1}))</td>
</tr>
</tbody>
</table>

Remark: The codes constructed in [4] are systematic are capable of correcting \(r \) deletions, \(o \) insertions, and \(s \) substitutions for any \(r, o, \) and \(s \) satisfying \(r + o + s \leq t \).

1. Introduction

- Codes correcting deletion and insertion errors [1]:

A code C can correct t deletions \iff C can correct t insertions \iff C can correct the combination of t_1 insertions and t_2 deletions for any non-negative integers t_1 and t_2 such that $t_1 + t_2 \leq t$.

- Codes correcting deletion, insertion and substitution errors:

<table>
<thead>
<tr>
<th>Input</th>
<th>A substitution</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>101001</td>
<td>101001</td>
<td>101101</td>
</tr>
</tbody>
</table>

A $(t + o + 2s)$-deletion correcting code \iff An $(t + s)$-deletion $(o + s)$-insertion correcting code \iff An t-deletion o-insertion s-substitution correcting code

However, it is not necessarily optimal in redundancy.

1. Introduction

- **Single**-deletion **s**-substitution correcting codes [6]:
 1) Bounds of optimal redundancy $r_{\text{opt}} : (s + 1) \log n + o(\log n) \leq r_{\text{opt}} \leq 2(s + 1) \log n + o(\log n)$;
 2) Construction of **single**-deletion **single**-substitution correcting codes with redundancy $r \leq 6 \log n + 8$.

Our contributions in this work:
Construction of **single**-deletion **s**-substitution correcting codes ($s \geq 2$) with redundancy $r \leq (3s + 4) \log n + o(\log n)$ and encoding/decoding complexity $O(n^{s+3})$.

<table>
<thead>
<tr>
<th>Construction</th>
<th>Redundancy</th>
<th>Encoding/Decoding Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sima – Gabrys – Bruck [4]</td>
<td>$r \leq (4s + 4) \log n + o(\log n)$</td>
<td>$O(n^{2s+3})$</td>
</tr>
<tr>
<td>Our work</td>
<td>$r \leq (3s + 4) \log n + o(\log n)$</td>
<td>$O(n^{s+3})$</td>
</tr>
</tbody>
</table>

2. Construction Method

➢ Notation:

\[B_{1,s}(c) \] — the set of all sequences that can be obtained from \(c \) by at most one deletion and at most \(s \) substitutions (error ball of \(c \)).

➢ Confusability Property: A function \(f : \{0, 1\}^L \rightarrow \{0, 1\}^R \) is said to satisfy the Confusability property if

\[
f(c) \neq f(c') \\
\forall c \neq c' : B_{1,s}(c) \cap B_{1,s}(c') \neq \emptyset.
\]

➢ If \(f \) satisfies the Confusability Property, then given any \(y \) that is obtained from \(c \) by one deletion and at most \(s \) substitutions, \(c \) can be recovered from \(y \) and \(f(c) \).

\[
\left(y, f(c) \right) \xrightarrow{\text{Decoding}} c
\]
2. Construction Method

➢ Structure of the encoding function:

\[x \rightarrow c = h(x) \rightarrow (c, g(c), \text{Rep}_{2s+2}(f(g(c)))) \]

where

1) \(h : \{0, 1\}^k \rightarrow \{0, 1\}^{n_0} \) is a systematic encoding function of the binary narrow-sense primitive BCH code (or its shortened code if necessary), hence we have \(n_0 - k \leq s \log n_0 + 2 \).

2) \(\text{Rep}_{2s+2}(\cdot) \) is the encoding function of the \((2s + 2)\)-fold repetition code.

3) Both \(f \) and \(g \) satisfy the Confusability Property, and

\[
\begin{align*}
\text{length of } g(c) &= (2s + 4) \log n_0 + o(\log n_0); \\
\text{length of } \text{Rep}_{2s+2}(f(g(c))) &= \text{length of } f(g(c)) = o(\log n_0).
\end{align*}
\]

➢ Redundancy:

\[
s \log n_0 + 2 + (2s + 4) \log n_0 + o(\log n_0) + o(\log n_0) = (3s + 4) \log n_0 + o(\log n_0).
\]

➢ Decoding:

Received sequence

\[
x \leftrightarrow c = h(x) \leftrightarrow g(c) \leftrightarrow f(g(c))
\]
2. Construction Method

➢ Description of f:

\[
f : \{0, 1\}^L \rightarrow \{0, 1\}^R
\]

where

\[
R = (s + 1)(2s + 1) \log L + (2s + 1) \log (2s + 1).
\]

➢ Construction of f: Denote $c = (c_1, c_2, \ldots, c_L)$. Then $f(c) = (f(c)_1, f(c)_2, \ldots, f(c)_{2s+1})$ such that

\[
f(c)_j = \sum_{i=1}^{L} \left(\sum_{e=1}^{i} e^{j-1} \right) c_i \mod (2s + 1)L^j
\]

We can prove that f satisfies the Confusability Property, that is

\[
f(c) \neq f(c'),
\]

\[
\forall c \text{ and } c' : c' \neq c \text{ and } B_{1, s}(c') \cap B_{1, s}(c) \neq \emptyset.
\]

Let $L = \text{length of } g(c) = (2s + 4) \log n_0 + o(\log n_0)$, then we have

\[
\text{length of Rep}_{2s+2}(f(g(c))) = \text{length of } f(g(c)) = o(\log n_0).
\]
2. Construction Method

Let \(L = \text{length of } h(x) = n_0 \).

- Syndrome Compression [8]: There exists a function \(P : \{0, 1\}^{n_0} \rightarrow [N 2^{O(\log n_0)}] \) such that
 \[f(c) \not\equiv f(c') \mod P(c), \]
 \[\forall c = h(x) \text{ and } c' = h(x'): c' \neq c \text{ and } B_{1,s}(c') \cap B_{1,s}(c) \neq \emptyset, \]

where

\[N = \# \{ c' = h(x') : c' \neq c \text{ and } B_{1,s}(c') \cap B_{1,s}(c) \neq \emptyset \} \leq n_0^{s+2}. \]

2. Construction Method

Let \(L = \text{length of } h(x) = n_0. \)

 Syndrome Compression [8] : There exists a function \(P : \{0, 1\}^{n_0} \rightarrow \left[N \ 2^{o(\log n_0)} \right] \)

such that \(f(c) \not\equiv f(c') \mod P(c), \)

\[\forall c = h(x) \text{ and } c' = h(x') : c' \neq c \text{ and } B_{1,s}(c') \cap B_{1,s}(c) \neq \emptyset, \]

where

\[N = \# \{ c' = h(x') : c' \neq c \text{ and } B_{1,s}(c') \cap B_{1,s}(c) \neq \emptyset \} \leq n_0^{s+2}. \]

Construction of \(g : \) Let \(g(c) = (f(c) \mod P(c), \ P(c)) \)

Then we have

\[\text{length of } g(c) = (2s + 4) \log n_0 + o(\log n_0). \]
2. Construction Method

➢ Syndrome Compression without precoding: There exists a function

\[P : \{0, 1\}^{n_0} \rightarrow \left[N \cdot 2^{o(\log n_0)} \right] \]

such that

\[f(c) \not\equiv f(c') \mod P(c), \]

\[\forall c': c' \neq c \text{ and } B_{1,s}(c') \cap B_{1,s}(c) \neq \emptyset, \]

where

\[N = \# \{ c' : c' \neq c \text{ and } B_{1,s}(c') \cap B_{1,s}(c) \neq \emptyset \} \leq n_0^{2s+2}. \]

➢ Construction of \(g \): Let \(g(c) = (f(c) \mod P(c), P(c)) \)

Then we have

\[\text{length of } g(c) = 2(2s + 2) \log n_0 + o(\log n_0) = (4s + 4) \log n_0 + o(\log n_0). \]

➢ Redundancy of the resulted code: \((4s + 4) \log n_0 + o(\log n_0) + o(\log n_0) = (4s + 4) \log n_0 + o(\log n_0). \)
3. Further Discussions

➢ Generalization to construct t-deletion s-substitution correcting codes for $t > 1$ with redundancy

$$r \leq (4t + 3s) \log n + o(\log n).$$
Thank you

Q & A