Efficient Architectures for Generalized Integrated
Interleaved Decoder

Zhenshan Xie and Xinmiao Zhang
The Ohio State University, Columbus, OH 43210, U.S.A.

Abstract—Generalized integrated interleaved (GII) codes nest
short sub-codewords to generate parities shared by the sub-
codewords. They allow hyper-speed decoding with excellent
correction capability, and are essential to next-generation data
storage. On the other hand, the hardware implementation of GII
decoders faces many challenges, including low achievable clock
frequency and large silicon area. This abstract presents novel
algorithmic reformulations and architectural transformations to
address each bottleneck. For an example GII code that has
the same rate and length as eight un-nested (255, 223) Reed-
Solomon (RS) codes, our GII decoder only has 30% area
overhead compared to the RS decoder while achieving 7 orders of
magnitude lower frame error rate. Its critical path only consists
of 7 XOR gates, and can easily achieve more than 40GByte/s
throughput.

I. INTRODUCTION

Next-generation big data analytics, cloud storage, and high-
performance computing require to access data from storage
with hyper speed, such as more 40GByte/sec. Additionally, the
continued technology scaling leads to deteriorating media. As
a result, powerful yet hyper-speed error-correcting codes are
required to ensure data reliability for next-generation storage.
Such high speed is not achievable by low-density parity-check
(LDPC) codes. On the other hand, Reed-Solomon (RS) or
BCH codes can not meet the error-correcting performance
requirement. Instead, the generalized integrated interleaved
(GII) codes [1] are the best candidate.

GII codes nest a set of short RS/BCH codewords to generate
codewords of stronger RS/BCH codes. Most of the time, the
errors are corrected within the individual short sub-codewords.
As a result, the decoder can achieve very high throughput.
On the other hand, the stronger codewords generated from the
nesting can be utilized to compute higher order syndromes and
correct more errors when needed. Hence, much better error-
correcting performance is achieved. Fig. 1 shows the frame
error rates (FERs) of GII [m, v] codes over GF(28) with m =
8 sub-codewords and v levels of nesting compared to eight
concatenated (255, 223) RS code without nesting. These codes
have the same rate and length.

GII decoding has two stages. The first stage is essentially
conventional RS/BCH decoding of individual sub-codewords.
The second-stage nested decoding translates the higher-order
syndromes of the more powerful nested codewords to addi-
tional syndromes for the sub-codewords to correct more errors.
Although RS/BCH decoding has been well-studied, the nested
decoding has many hardware implementation challenges. Even

This work is supported in part by Kioxia Corporation

1010+

Un-nested(8, 255)
—8— GlI([8,1], 255)
—&— GliI([8,2], 255)
—<— GlI([8,3], 255)
—b>—GliI([8,4], 255)
—A— GII([8,5], 255)
—*— GlI([8,6], 255)
—O—GlI([8,7], 255)

10720

Frame Error Rate (FER)

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028
Symbol Error Rate (SER)

Fig. 1. FER comparisons of GII codes

0.03

though it can continue from intermediate results of the sub-
codeword decoding [2], it has long critical path, which limits
the achievable clock frequency, large silicon area, and low
hardware utilization efficiency.

Through algorithmic reformulations and architectural mod-
ifications, each of the hardware implementation bottlenecks
of GII decoders has been addressed in our recent work [3].
For an example GII [8,3] code with the same redundancy and
codeword length as eight un-nested (255, 223) RS codes over
GF(2%), our architectures reduce the critical path of the GII
decoder from 18 to 7 gates. As a result, it can easily achieve
more than 40GByte/s throughput on a Xilinx FPGA device.
Our designs also reduce the area requirement by more than
50%. Compared to the RS decoder, the area overhead is less
than 30% while the FER is 7 orders of magnitude lower.

II. GENERALIZED INTEGRATED INTERLEAVED CODES

Let Cy(n,ky),Co—1(n,ky—1)---,Co(n, ko) be v + 1
RS/BCH codes over GF'(2%) with k,, < k1 < --- < ko, and
their error-correcting capabilities are t,,%t,_1,--- , %o, respec-
tively. Denote a set of m codewords of Cy by ¢, c1,- -+ ,Cm—1.
Assume that « is a primitive element of GF'(2?). The GII code
is defined as [1], [2]

m—1
Cﬁ{c:[co,' o Cme1) ¢ € C, El:Za“ci €Cpy, O§l<v} .

i=0
(M
Let y;(x) = ¢;(x)+e;(x) be the i-th received sub-codeword,
and e;(x) is the error vector. In the sub-codeword decoding,
syndromes SJ(-’) = y;(a?T) = e;(a?T1) (0 < j < 2tp) are
first computed. From S(z) = Z?t:ogl S;x7, the KES, such as
the Berlekamp-Massey algorithm (BMA), calculates an error
locator polynomial A(x) and an error evaluator polynomial

Q(x) satisfying Q(x) = A(z)S(x) mod z% using an iterative

process. The inverse roots of A(z) are the error locations and
the error magnitudes can be computed from A(x) and Q(z) .
2t syndromes are needed to correct ¢ errors. When ¢ > t,
higher-order syndromes can not be computed from y;. In-
stead, since the nested codewords ¢; have higher correction
capability, more syndromes can be calculated for them. Let
Gi(z) = 7 attyi(x). Then 81 & gy(a+1) = &(al*)
2tg < j < 2ty_,0 <1 < v) are vahd syndromes for the
nested codewords. They can be converted to higher-order sub-
codeword syndromes according to the nesting in (1) to correct
more errors. In the KES, more iterations can be carried out
to incorporate the higher-order syndromes when they become
available. As a result, the KES for such nested decoding
utilizing higher-order syndromes do not have to restart [2].

III. HIGH-SPEED AND LOW-COMPLEXITY GII DECODER
ARCHITECTURES

The clock frequency bottleneck of the GII decoder lies in
the KES and nested KES due to the iterative computations. In
the rt" iteration of the inversionless BM algorithm [4], a dis-
crepancy coefficient is first computed as 6(") = ZAZ(-T)ST_i.
Then §(") is used to update A(")(z) so that ZAETH)S,._,»
becomes zero. The 6" computation needs a large multiplier-
adder tree. Such a tree and the data dependency lead to
long critical path. Alternatively, (") can be interpreted as the
rth coefficient of A(") (x)S(x). The reformulated inversionless
BM (riBM) algorithm [5] initializes a discrepancy polynomial
as A0 (z) = S(z). It is updated with A(z) as

A(T'H)(m) _ 7(T)A(T) (z) + A(()T>xB(T)(x) @

AT (2) =4 WA (@) fo + AT (@)

where ©(z) and B(x) are auxiliary polynomials and ("1
is a scalar updated in each iteration. The constant coefficient
of Al (z), denoted by A(()T), happens to be the discrepancy
6(") needed for iteration . Using (2), the critical path of the
riBM architecture is reduced to just one multiplier and one
adder. However, the higher-order syndromes derived from the
nested codewords are not available in the very beginning of
the KES to initialize A() (). Therefore, the riBM algorithm
can not be adopted in the KES iterations for those higher-order
syndromes in the nested decoding to reduce the critical path.

Given the A(2%)(z) from the end of the riBM algorithm
for sub-codeword KES, the discrepancy coefficients for later
iterations can be rewritten as [3]

A;(ft(’) (A(Qt())—i—A 2to)S 0)
0

AED) = (A AT S5 WAL Sy

ALy = (A5 AT St AT Sty 1 1H+AG™ Sty 12

Only one discrepancy coefficient is needed in each iteration
for the nested KES starting from §(?%) = A;(tim). Hence, the
higher-order syndromes So;,, Sat,+1,- - can be incorporated
one by one. Considering that A(x) also updates with the
iterations, the nested KES can be reformulated as [3]

A(T'H)(g:) _ ,Y(T)A(T) (z) + A(()T)a:B(T) (z)
A (@) = /(AT (@) /z + 1A (@) ®)

+ A0 () + Srr12BM ().

Fig. 2. Processing element of nested KES

TABLE I
DECODER COMPLEXITY AND PERFORMANCE COMPARISONS OF THE
EXAMPLE GII [8,3] CODE AND EIGHT UN-NESTED (255,223) RS CODES

“ Proposed GII decoder }un-nested RS decoder

buffer (bits) 83200 (1.69) 49152 (1)
logic gate (# of XORs) 326912 (1.17) 278304 (1)
critical path (# of XORs) 7 7

of clks/codeword 27 32
FER @ps=0.02 2.09e-11 1.55e-4

The critical path of such computations consists of two multipli-
ers and two adders, and is further reduced to one multiplier and
one adder by applying the ‘slow-down’ and ‘re-timing’ tech-
niques and interleaving the decoding of two sub-codewords.
Fig. 2 shows the processing element (PE) architecture of our
nested KES.

Besides eliminating the clock frequency bottleneck, another
three major contributions were made in our design: i) The
higher-order syndrome computation is reformulated so that
a unified architecture is used to implement both the nested
KES and higher-order syndrome computations; ii) A modified
nesting scheme utilizing subfield elements was proposed to
reduce the complexities of nested syndrome computation and
conversion by a significant factor; iii) Low-overhead hardware
units scalable with the number of actual errors have been
developed to substantially improve the hardware utilization
efficiency.

Using our designs, the GII decoder silicon area has been
reduced by more than 50%. Complexity comparisons with
un-nested RS decoders are provided in Table 1. Overall, our
GII decoder has only less than 30% overhead compared to
the RS decoder, while achieving 7 orders of magnitude lower
FER. Even on an Xilinx UltraSCALE+ device, our design can
achieve more than 550Mz clock frequency, which translates
to a throughput of >40GByte/s.

REFERENCES

[1] X. Tang and R. Koetter, “A novel method for combining algebraic
decoding and iterative processing,” in Proc. IEEE Intl. Symp. Info. Theory,
Seattle, WA, USA, Jul. 2006, pp. 474-478.

[2] Y. Wu, “Generalized integrated interleaved codes,” IEEE Trans. Info.
Theory, vol. 63, no. 2, pp. 1102-1119, Feb. 2017.

[3] X. Zhang and Z. Xie, “Efficient architectures for generalized integrated
interleaved decoder,” IEEE Trans. on Circuits and Syst.-I, 2019.

[4] 1. S. Reed, M. T. Shih, and T. K. Truong, “VLSI design of inverse-
free Berlekamp-Massey algorithm,” IEE Proc. E-Computers and Digital
Techniques, vol. 138, no. 5, pp. 295-298, Sep. 1991.

[5] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures for Reed-
Solomon decoders,” IEEE Trans. on VLSI Syst., vol. 9, no. 5, pp. 641-655,
Oct. 2001.

