
Understanding and Improving Persistent
Transactions on Optane DC Memory

1st Pantea Zardoshti
Lehigh University

USA
zardoshti@lehigh.edu

2nd Michael Spear
Lehigh University

USA
spear@lehigh.edu

3rd Aida Vousoghi
Oracle Corp.

USA
aida.vosoughi@oracle.com

4th Garret Swart
Oracle Corp.

USA
garret.swart@oracle.com

Abstract—Storing data structures in high-capacity byte-
addressable persistent memory instead of DRAM or a storage
device offers the opportunity to (1) reduce cost and power
consumption compared with DRAM, (2) decrease the latency
and CPU resources needed for an I/O operation compared with
storage, and (3) allow for fast recovery as the data structure
remains in memory after a machine failure. The first commercial
offering in this space is Intel Optane Direct Connect (Optane
DC) Persistent Memory. Optane DC promises access time within
a constant factor of DRAM, with larger capacity, lower en-
ergy consumption, and persistence. We present an experimental
evaluation of persistent transactional memory performance, and
explore how Optane DC durability domains affect the overall
results. Given that neither of the two available durability domains
can deliver performance competitive with DRAM, we introduce
and emulate a new durability model, called PDRAM, in which the
memory controller tracks enough information (and has enough
reserve power) to make DRAM behave like a persistent cache of
Optane DC memory [1].

I. INTRODUCTION

Intel Optane Direct Connect Persistent Memory (Optane
DC) can be thought of as a DRAM alternative that has higher
density and lower power consumption, albeit at the cost of
higher latency and lower throughput. More exciting is that
Optane DC memory can be persistent: it can retain its contents
for extended periods of time, without requiring any energy to
do so. Current Optane DC-based systems can operate in two
modes: 1) Memory Mode treats DRAM like a cache of the
Optane DC memory and disregards persistence. 2) AppDirect
Mode treats the Optane DC and DRAM as separate memories.
To benefit from persistence, it is not enough to simply run an
application in AppDirect Mode, because some parts of the
system are not persistent. Systems vary in terms of which
of their components are persistent, i.e., which are part of
the “Durability Domain”. There are two persistent domains:
in the first domain the Optane memory and the memory
controller are persistent: once a store reaches the boundary of
the Asynchronous DRAM Refresh (ADR), there is sufficient
reserve power to guarantee that the store will pass through the
WPQ to the Optane memory and be written, even if the system
experiences a power failure. In the second domain, extended
ADR (“eADR”) provides enough power to allow the operating

This work has been accepted for publication and presentation at the 34th
IEEE International Parallel and Distributed Processing Symposium (IPDPS)

system to execute instructions that cause all of the data in the
caches and WPQ to be flushed to the Optane DIMMs. With
eADR, it is not necessary for programs to explicitly execute
clwb and fence instructions.

In this abstract, we focus on two questions. The first is quite
simply “How effectively do measurements on DRAM systems
predict performance on Optane DC systems?” The second
question is “What is the performance impact of providing
enough reserve power to operate in the eADR durability
domain?”

II. PTM PERFORMANCE ON OPTANE

Experimental Platform: All experiments were conducted on
a system containing two 2.30 GHz Intel Xeon Gold 5218
CPUs with 192GB of DRAM and 1.5 TB of Optane DC
memory with enabled interleaving. Each CPU has 16 cores /
32 threads, runs Linux kernel version 4.14.35. Experiments are
the average of five trials; to avoid NUMA effects, we limited
execution to a single CPU socket. Software was compiled
using LLVM/Clang 6.0 with O3 optimizations. We used the
open-source LLVM PTM plugin [2], which provides a suite
of different PTM algorithms [3]. Experiments use the DAX
filesystem and Makalu allocator [4] to manage memory from
the persistent heap.

Comparing DRAM and Optane Behaviors in ADR: In this
subsection, we focus on the four curves marked “ADR” on
Figure 1(a)(b). The “U” and “R” suffixes indicate undo logging
or redo logging and “Optane” use Optane DC memory in Ap-
pDirect mode. Our first finding is that past recommendations
regarding the costs of undo logging remain true: in almost
every case, redo logging outperforms undo logging. This is
despite the higher instruction count for redo logging (due
to reads performing lookups in the redo log), and a direct
consequence of the cost of fences for undo logging. Moreover,
Optane is worse than scalability on DRAM. For example, in
the Vacation workloads the maximum throughput is reached
at a lower thread count, and the gap at peak throughput is
substantially larger than the gap at low thread counts. In
addition, it is known that Optane DC reads tend to scale
with the thread count, whereas writes reach their maximum
throughput quickly [5].

Contrasting eADR and ADR Performance: Next, we com-
pare the performance of the system under the ADR and



1 2 4 8 16 32
Number of Threads

0

50

100

150

200

250

300
T
h
ro

u
g
h
p
u
t 

(K
tp

s)

TPCC (Hash Table)

ADR_DRAM_U

ADR_DRAM_R

eADR_DRAM_U

eADR_DRAM_R

ADR_Optane_U

ADR_Optane_R

eADR_Optane_U

eADR_Optane_R

(a) TPCC (Hash Table)

1 2 4 8 16 32
Number of Threads

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t 

(K
tp

s)

Vacation(high)

ADR_DRAM_U

ADR_DRAM_R

eADR_DRAM_U

eADR_DRAM_R

ADR_Optane_U

ADR_Optane_R

eADR_Optane_U

eADR_Optane_R

(b) Vacation (high)

1 2 4 8 16 32
Number of Threads

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t 

(K
tp

s)

TPCC (Hash Table)

eADR_DRAM_U

eADR_DRAM_R

eADR_Optane_U

eADR_Optane_R

eADR_PDRAM_U

eADR_PDRAM_R

eADR_PDRAM_Lite_R

(c) TPCC (Hash Table)

Fig. 1: Performance comparison between DRAM and Optane (a)(b) and different durability models(c) for workloads.

eADR durability domains. Returning to Figure 1(a)(b), the
most significant finding is that eADR provides substantial
performance gains for every workload except Vacation. When
we focus on the “redo” PTMs, this result speaks to the latency
of clwb instructions, as they are the only aspect of the
algorithm that changes. Clearly, avoiding the need to flush
cache lines to the memory controller has a significant impact
on performance. Even with these advantages, eADR still does
not reach the performance of DRAM. There are two related
factors which introduce latency. The first is that the WPQs
are bounded, and become saturated. The second is that write
latency is higher for Optane than for DRAM. Note that while
the eADR PTMs do not explicitly issue clwb instructions,
data still evicts from the L3 to Optane, through the WPQs. The
known problem of WPQ saturation [5] explains the decrease
in scalability.

III. NEW MODELS FOR PERSISTENCE

In Section II, we observed that eADR can substantially
improve performance versus ADR, primarily because eADR
does not require explicit fences and flushes. In this section, we
introduce two new durability models, which are able to deliver
better performance than eADR. While neither is available in
hardware today, nor does either require substantially different
support than is available in Optane DC systems today. The
fundamental enabling mechanism for our new durability mod-
els is the directory used by the memory controller when the
system runs in Memory Mode.

The Persistent DRAM Durability Domain: Our first new
durability domain, PDRAM, gives the illusion that all of
DRAM is persistent. It combines the persistence of AppDirect
Mode with the caching behavior of Memory Mode. Like
eADR, PDRAM treats the caches as persistent. However, it
requires a directory in DRAM, so that it can potentially flush
all of DRAM to Optane on a power signal.

The PDRAM-Lite Durability Domain: We note that making
all of DRAM into a cache of Optane memory may not be
advantageous. On the one hand, certain memory regions (such
as the stack, or the lookup tables of a redo log) typically do
not require persistence. Additionally, the specific case of redo-

based PTM has simpler persistence requirements than undo-
based PTM.

Notice that in redo-based PTM, a transaction only performs
stores to the Optane memory at commit time. Until the commit
point, a redo-based transaction keeps its entire write working
set in the (highly compact) redo log. For transactions with
modest write set sizes, it would be possible to use a small
amount of PDRAM for the transactions’ redo logs, without
caching any other Optane pages in DRAM. We refer to this
approach as PDRAM-Lite.

Evaluation of PDRAM and PDRAM-Lite: Figure 1(c) re-
peats the experiments of Section II. The first goal of these
experiments is to determine whether PDRAM can bridge the
gap between the DRAM and eADR configurations. The result
is largely affirmative. PDRAM matches DRAM performance
up until Optane scalability bottlenecks (e.g., WPQ saturation)
occur.

The second goal of these experiments is to determine
whether PDRAM-Lite offers sufficient value. The result here is
less clear: on the one hand, PDRAM-Lite outperforms eADR
in every case. In fact, this result confirms a finding from [5]:
Optane DC© throughputs are much closer to DRAM through-
put for regular access patterns than for irregular patterns.
Moving the redo log into DRAM does not have a significant
impact on latency, since the compact log, with its regular
access pattern, did not have much worse latency than DRAM
to begin with.

REFERENCES

[1] P. Zardoshti, M. Spear, A. Vousoghi, and G. Swart, “Understanding and
Improving Persistent Transactions on Optane DC Memory,” in Proceed-
ings of the 34th IEEE International Parallel & Distributed Processing
Symposium (IPDPS), New Orleans, LA, May 2020.

[2] P. Zardoshti, T. Zhou, P. Balaji, M. L. Scott, and M. Spear, “Simplifying
Transactional Memory Support in C++,” p. 25, 2019.

[3] P. Zardoshti, T. Zhou, Y. Liu, and M. Spear, “Optimizing Persistent Mem-
ory Transactions,” in Proceedings of the 28th International Conference
on Parallel Architectures and Compilation Techniques (PACT), Seattle,
WA, Sep. 2019.

[4] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Makalu: Fast recov-
erable allocation of non-volatile memory,” in ACM SIGPLAN Notices,
vol. 51, no. 10. ACM, 2016, pp. 677–694.

[5] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh,
Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic Performance Measurements
of the Intel Optane DC Persistent Memory Module,” 2019.


