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Figure 1: The data-exchange overhead compared against
the execution time of performing compute kernels on the
same amount of data.

1. INTRODUCTION
Approximate computing is gaining traction in commercial-

ized systems because many applications can now tolerate
small errors in input data. The concept of approximate com-
puting is to receive fewer details from the raw data, processors
and hardware accelerators that use approximate computing
can make trade-offs in accuracy to improve performance, en-
ergy, power and cost by applying simplified circuits or reduc-
ing computation. Therefore, approximate computing creates
a new demand of presenting datasets in different resolutions,
meaning details about the raw data (e.g., data precision lev-
els, summarized results, intermediate results, and sampled
contexts).

As existing approximate-computing research mainly fo-
cuses on the kernel computation while leaving other architec-
tural components remaining the same as exact computing, the
storage device must faithfully present raw data in the system
main memory before computation starts. Due to the limited
number of system interconnect links, the part of transferring
raw data through SSD’s external PCIe links bottlenecks the
whole application performance. With recent approximate-
computing-inspired hardware accelerators (e.g., NVIDIA’s
latest Tensor Cores [1]) significantly shrinking the execution
time in compute kernels, the data-preparation overhead has
overtaken compute kernels as a new bottleneck in many appli-
cations as in Figure 1. However, as the application only needs
lower-resolution data, sending raw data to the main memory
is more than what the application really needs. To fundamen-
tally address the aforementioned bottleneck in approximate
computing, the storage device needs to work with the running
application to deliver datasets in the required resolution.

This paper introduces a holistic, hardware-software co-
design system architecture, Varifocal Storage (VS), that dy-
namically adjusts the data resolution for the demand of appli-
cations inside the storage device. By extending approximate
computing to all layers within a system, we can achieve bet-
ter performance but still maintain the flexibility and quality
without additional costs. We revisit the task allocation of ap-
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Figure 2: The data-processing pipeline of VS.

proximate computing on general-purpose computers to place
tasks such as raw-data retrieval, data-resolution adjustment
and quality control in the most appropriate place within a
system in full-stack system design perspective. The storage
device can work directly with the running application to de-
liver datasets in the desired resolution before going through
the interconnect to save the bandwidth demand from the data
source as well as to decrease the most latency-critical data-
transfer overhead.

We evaluate VS by running a wide range of applications on
our prototype SSD. VS achieves 1.52X speedup on average
over conventional approximate computing.

2. VARIFOCAL STORAGE SYSTEM AR-
CHITECTURE

Figure 2 demonstrates the data processing pipeline in VS.
By using operators and quality-control mechanisms inside the
storage device, VS exploits the richer internal bandwidth and
idle processing power to efficiently adjust/prepare datasets
in lower resolutions for approximate computing applications.
Instead of always sending raw data, VS allows the storage
device to send adjusted datasets to the system main memory.
Then, the approximate computing components can directly
work on lower resolution data, without additional conversion.
In this way, VS reduces the total latency of transferring data
over the system interconnect since the size of lower-resolution
data is smaller than raw data. VS also mitigates the idle
time in compute units and frees up CPU resources to tackle
more useful workloads, leading to performance gains for
approximate applications on the host side.

This section will briefly describe the programming model,
operators, quality control mechanisms, and architectural sup-
port of VS.

Programming model To prepare an application to take ad-
vantage of the VS model, the programmer uses the VS library
to specify data resolutions and retrieve adjusted data for the
application. These library functions help the application to
set up (1) the operators required to read data and whether any
quality control mechanism is enabled, and (2) the parameters
that allow the underlying storage device to adjust data as well
as control variables that quality control mechanisms use to
control the adjusted data.
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VS operators VS provides a set of operators to adjust data
resolutions and expose these operators through the NVMe
interface as well as the system API. VS-operators are selected
under the following criteria: (1) The computation overhead
must match the processing power inside the storage device.
Therefore, VS can minimize the impact on access latency and
power consumption and avoid extra hardware costs. (2) A
wide range of applications must be able to apply the operator,
thereby allowing for more efficient use of valuable device
resources (VS identifies the most useful operators from pre-
vious efforts [2, 3]). (3) The operator must allow VS to take
advantage of mismatches between external and internal band-
widths and downsize the outgoing data. These operators can
flexibly support various resolutions and accommodate exact
computing.

First-level quality control in the storage devices If the
input quality is way too far from the origin, the approximate
computing can hardly generate meaningful results [4, 5, 6,
7]. Therefore, we designed two quality control mechanisms,
Autofocus and iFilter, both control the quality of adjusted
data, avoiding the cases of sending data that fail to pass
the quality control knobs to the host before the computation
occurs. In contrast, all previous research projects censor
computation results and always require at least part of raw
data to present in the host main memory as well as being
computed.

Autofocus allows the programmer to simply specify the
desired VS-operator, letting VS decide the most appropriate
resolution that every checked piece of the adjusted data suc-
cessfully passes through the pre-defined, operator-dependent
threshold values. If low-resolution data failed on the quality
control knobs, VS will reject low-resolution data and gradu-
ally use higher resolutions until the quality fits the demand
and apply this resolution for the same dataset later. Utilizing
another important observation from previous research that a
small subset of input data is representative of the rest of the
input data in approximate-computing applications that toler-
ate inaccuracies [5], Autofocus select the resolution using
only a small portion of the raw input data from a requested
dataset and then monitor the quality of the adjusted input
data.

iFilter can work without programmer input and is more
effective than Autofocus for applications having compute
kernels that are compatible with multiple VS-operators. The
iFilter algorithm is similar to the Autofocus algorithm in that
it selects the most appropriate resolution for each compatible
operator, except that iFilter will keep track of the resolution
and the resulting data size for each operator. After selecting
an operator that passes all quality control variables and gener-
ates the smallest data size among all passing operators, iFilter
will enter the monitoring phase as in Autofocus.

Building a VS-compliant storage device Building a VS-
compliant storage device means tackling challenges associ-
ated with (1) providing a hardware/software interface that
allows applications to describe the resolutions and quality
of the target data, and (2) minimizing the computational
overhead/cost of adjusting data resolutions. VS overcomes
the former challenge by extending the NVMe interface; this
requires the fewest modifications to the system stack and
applications. VS addresses the latter challenge by exploiting
the idle cycles available in modern SSD controllers.

3. RESULTS
Figure 3 shows the relative end-to-end latency of running a

complete workload using workloads with the conventional ap-
proximate computing approach with GPU-accelerated kernels
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Figure 3: The speedup of the end-to-end latency.

as the baseline. Since VS efficiently prepares input datasets in
storage devices for approximate computing kernels running
on the GPU, the manual programmer-directed VS leads to a
speedup of 1.52X for these applications. VS also achieved
an average energy savings of 32% for applications compared
to the conventional approximate computing.

Using Autofocus to dynamically select the desired data
resolutions, these applications achieve an average speedup of
1.43X. Without any programmer intervention, iFilter can im-
prove performance by 1.46X. In contrast, the exact computing
is 7% slower than the conventional approximate computing.

Several groups of our workloads shared the same datasets,
but applied different operators and resolutions to accommo-
date each individual demand. Without an architecture like VS,
the storage system must store multiple versions of a shared
dataset or provide raw data to the host for preprocessing,
hurting either space-efficiency or performance.

We also compare our mechanisms with other alterna-
tives. Autofocus outperforms a state-of-the-art quality control
mechanism by up to 2.86X. VS also outperforms the best
compression algorithm for each dataset by 4.40X since VS
incurs zero overhead in decoding data on the host side.
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