
Hardware Implementation of Strand Persistency
V. Gogte∗, W. Wang†, S. Diestelhorst†, P. M. Chen∗, S. Narayanasamy∗, T. F. Wenisch∗

∗University of Michigan {vgogte,pmchen,nsatish,twenisch}@umich.edu
†ARM {william.wang,stephan.diestelhorst}@arm.com

I. INTRODUCTION

Persistent memory (PM) technologies, such as Intel and
Micron’s 3D XPoint, are here—cloud vendors have already
started public offerings with support for Intel’s Optane DC
persistent memory. PMs combine the byte-addressability of
DRAM and durability of storage devices. Because PMs are
durable, they retain data across failures, such as power in-
terruptions and program crashes. Upon failure, the volatile
program state in hardware caches, registers, and DRAM is
lost. In contrast, PM retains its contents—a recovery process
can inspect these contents, reconstruct required volatile state,
and resume program execution.

Several persistency models have been proposed in the past
to enable writing recoverable software, both in hardware [1, 2]
and programming languages [3, 5, 7, 6]. Like prior works [9],
we refer to the act of completing a store operation to PM as
a persist. Recent works [5, 3] extend the memory models of
high-level languages, such as C++ and Java, with persistency
semantics. These language-level persistency models differ in
the synchronization primitives that they employ to provide
varying granularity of failure atomicity. They enable failure
atomicity for a set of persists. In case of failure, either all or
none of the updates within a failure-atomic region are visible
to recovery. Specifically, ATLAS [3], Coupled-SFR [5], and
Decoupled-SFR [5] employ general synchronization primitives
in C++ to prescribe the ordering and failure atomicity of
PM operations. Other works [1] ensure failure atomicity at
a granularity of transactions using software libraries or high-
level language extensions.

These language-level models rely on low-level hardware
ISA primitives to order PM operations [1, 2]. For instance,
Intel x86 systems employ the CLWB instruction to explicitly
flush dirty cache lines to the point of persistence and the
SFENCE instruction to order subsequent CLWBs and stores
with prior CLWBs and stores [1]. Under Intel’s persistency
model, SFENCE enforces a bi-directional ordering constraint
on subsequent persists and introduces high-latency stalls until
prior CLWBs and stores complete; SFENCE imposes stricter
ordering constraints than required by language-level models.

Prior research proposals relax ordering constraints by
proposing relaxed persistency models [9] in hardware and/or
building hardware logging mechanisms to ensure failure-
atomic updates to PM. These works propose relaxed per-
sistency models, such as epoch persistency, that implement
persist barriers to divide regions of code into epochs; they
allow persist reordering within epochs and disallow persist
reordering across epochs. Unfortunately, epoch persistency
labels only consecutive persists that lie within the same epoch
as concurrent. It fails to relax ordering constraints on persists
that may be concurrent, but do not lie in the same epoch.

In contrast, hardware logging mechanisms aim to provide
efficient implementations for ensuring failure atomicity for PM
updates in hardware. These mechanisms impose fine-grained
ordering constraints (e.g. , between log and PM updates) on
persists but propose inflexible hardware that fails to extend to
a wide range of evolving language-level persistency models.

In this work, we propose StrandWeaver, which formally
defines and implements the strand persistency model to min-
imally constrain ordering on persists to PM. The principles
of the strand persistency model were proposed in earlier
work [9, 4], but no hardware implementation, ISA primitives,
or software use cases have yet been reported. The strand
persistency model defines the order in which persists may
drain to PM. It decouples persist order from the write visibility
order (defined by the memory consistency model)—memory
operations can be made visible in shared memory without
stalling for prior persists to drain to PM.

II. STRAND PERSISTENCY MODEL

Strand persistency divides thread execution into strands.
Strands constitute sets of PM operations that lie on the same
logical thread. Ordering primitives enforce persist ordering
within strands, but persists are not individually ordered across
strands. We use the term “strand” to evoke the idea that
a strand is a part of a logical thread, but has independent
persist ordering. Strand persistency decouples the visibility
and persist order of PM operations. The consistency model
continues to order visibility of PM operations—PM operations
on separate strands follow visibility order enforced by system’s
consistency model.

Strand primitives. Strand persistency employs three prim-
itives to prescribe persist ordering: a persist barrier to enforce
persist ordering among operations on a strand, NewStrand
to initiate a new strand, and a JoinStrand to merge prior
strands initiated on the logical thread. PM accesses on a
thread separated by a persist barrier are ordered. Conversely,
NewStrand removes ordering constraints on subsequent PM
operations. NewStrand initiates a new strand—a strand be-
haves as a separate logical thread in a persist order. Persists
on different strands can be issued concurrently to PM. Note
that persist barriers, within a strand, continue to order persists
on that strand. The hardware must guarantee that recovery
software never observes a mis-ordering of two PM writes
on the same strand that are separated by a persist barrier.
Finally, JoinStrand merges strands that were initiated on the
logical thread. It ensures the persists issued on the prior strands
complete before any subsequent persists are issued.

A. Hardware Implementation

We now describe StrandWeaver’s hardware mechanisms.



Strand Buffer Unit

LQ

Persist Queue

Mem Op.

CLWB

Addr

clwb addr

Can 
Issue
0/1

Has 
Issued

0/1

Cmpl. 

0/1
NewStrand X 0/1 0/1 0/1
JoinStrand X X X 0/1

PersistBarrier X 0/1 0/1 0/1

SQ PQ

L1 
Cache

WB 

SB0 SBn

…
Mem Op.

CLWB

Addr

clwb addr

Can 
Issue
0/1

Has 
Issued

0/1

Cmpl. 

0/1
PersistBarrier 0/1

Ongoing 
buffer idx Strand Buffer

Coherence 
Requests

WB 
Req

SB0
Idx … SBn 

Idx

Write-back buffer

CLWB
PersistBarrier
NewStrand

X

CLWB req CLWB resp

Snoop 
Req

SB0
Idx … SBn 

Idx

Snoop buffer

X X

Fig. 1: StrandWeaver architecture.

Microarchitecure. We implement StrandWeaver’s persist
barrier, NewStrand, and JoinStrand primitives as ISA ex-
tensions. A persist occurs due to a voluntary data flush from
volatile caches to PM using a CLWB operation, or a writeback
resulting from cacheline replacement.

Architecture overview. Figure 1 shows the high-level
architecture of StrandWeaver. The persist queue and strand
buffer unit jointly enforce persist ordering. The persist queue,
implemented alongside the load-store queue (LSQ), ensures
that CLWBs and stores separated by a persist barrier within
a strand are issued to the L1 cache in order, and CLWBs
separated by JoinStrand complete in order. The strand buffer
unit is primarily responsible for leveraging inter-strand persist
concurrency to schedule CLWBs to PM. It resides adjacent to
the L1 cache and comprises an array of strand buffers that may
issue CLWBs from different strands concurrently. Each strand
buffer manages persist order within a strand and guarantees
that persists separated by persist barriers within that strand
complete in order. The strand buffer unit also coordinates with
the L1 cache to ensure that persists due to cache writebacks are
ordered as per PMO. It also tracks cache coherence messages
to ensure that inter-thread persist dependencies are preserved.

Persist queue architecture. The persist queue manages en-
tries that record ongoing CLWBs, persist barriers, NewStrand,
and JoinStrand operations. It tracks persist barriers to mon-
itor intra-strand persist dependencies. On insertion, a persist
barrier imposes a dependency so that CLWBs and stores are
ordered within its strand. These constraints ensure that stores
do not violate persist order by updating the cache and draining
to PM via a cache writeback before preceding CLWBs. The
persist queue also coordinates with the store queue to guar-
antee that younger CLWBs are issued to the strand buffer unit
only after elder store operations to the same memory location.
JoinStrand ensures that CLWBs and stores on prior strands
complete before any subsequent CLWBs and stores are issued.

Strand buffer unit architecture. The strand buffer unit
coordinates with the L1 cache to guarantee CLWBs and cache
writebacks drain to PM and complete in order specified by the
primitives. It maintains an array of strand buffers—each strand
buffer manages persist ordering within one strand. CLWBs that
lie in different strand buffers can be issued concurrently to

PM. The strand buffer unit receives CLWB, persist barriers, and
NewStrand operations from the persist queue. In the strand
buffer unit, the ongoing buffer index points to the strand buffer
to which an incoming CLWB or persist barrier is appended.
This index is updated when the strand buffer unit receives a
NewStrand operation indicating the beginning of a new strand.

Each strand buffer manages intra-strand persist order arising
from persist barriers. On insertion in a strand buffer, a persist
barrier creates a dependency that orders any subsequent CLWBs
appended to the buffer. A persist barrier completes when
CLWBs ahead of it complete and retire from the strand buffer.

Cache writebacks. PM writes can also happen due to cache
line writebacks, in the same or the other cores. We provision
fields in the writeback and snoop buffers that track these
dependencies. We skip this discussion due to space limitation.

B. Designing Language-level Persistency Models
Recent efforts [3, 5, 1] extend persistency semantics and

provide ISA-agnostic programming frameworks in high-level
languages, such as C++ and Java. The models enable undo
logging as a part of language semantics—compiler imple-
mentations emit logging for persistent stores in the program,
transparent to the programmer. We propose logging based
on strand persistency primitives. We integrate our logging
mechanisms into compiler passes to implement language-level
persistency model, that provide failure-atomic transactions [1],
outermost critical sections [3], and SFRs [5].

III. EVALUATION

We implement StrandWeaver in Gem5. We study a suite of
five write-intensive micro-benchmarks and benchmarks used
in prior works [5]. We compare failure-atomic transactions,
Decoupled-SFR, and ATLAS, built on StrandWeaver’s prim-
itives with the Intel x86 [1] and state-of-the-art HOPS [8]
designs. Due to space limitations, we list only the average
improvement obtained in our designs. Strand persistency en-
ables high persist concurrency in all designs. Overall, we
achieve speedup of up to 74.6% (45.5% avg.) in failure-
atomic transactions, 96.5% (46.1% avg.) in Decoupled-SFR,
and 79.7% (39.9% avg.) in ATLAS over Intel x86. Compared
to the epoch persistency model in HOPS [8], StrandWeaver
achieves a speedup of up to 55.5% (19.8% avg.).

REFERENCES

[1] “pmem.io: Persistent memory programming,” https://pmem.io/pmdk/.
[2] ARM, “Armv8-a architecture evolution,” 2016, tinyurl.com/arm-nvm.
[3] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging

locks for non-volatile memory consistency,” in OOPSLA ’14, 2014.
[4] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and

T. F. Wenisch, “Strand persistency,” in NVMW’19.
[5] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and

T. F. Wenisch, “Persistency for synchronization-free regions,” in PLDI’18.
[6] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, W. Wang, P. M. Chen,

S. Narayanasamy, and T. F. Wenisch, “Language support for memory
persistency,” IEEE Micro ’18.

[7] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
ISCA ’17.

[8] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in ASPLOS ’17.

[9] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in ISCA
’14.

2


