Kingsguard: Write-Rationing Garbage Collection for Hybrid Memories

Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent), Kathryn S. Mckinley (Google), and Lieven Eeckhout (Ghent)

Shoaib.Akram@UGent.be
DRAM is facing challenges

- Scalability
- Reliability
- Energy
Phase change memory is promising

But ...

GB/$ ☻

Latency ☹

Endurance ☹

reset to amorphous

set to crystalline

read
Hybrid DRAM-PCM memory

- Speed
- Endurance

- Energy
- Capacity

DRAM

Challenge

Mitigate PCM wear-out and extend its lifetime
How to mitigate PCM wear-out?

Phase change memory as ...

Wear Level Wear Level Wear Level Operating System Language runtime
PCM only with leveling is not practical

32 GB PCM memory, 32 cores

Lifetime in years

Xalan Pmd Pmd.S Lusearch Lu.Fix Antlr Bloat Avg
OS to limit PCM writes

Drawbacks

Coarse grained
Page migrations can be costly
Managed runtime to limit PCM writes

Our work uses garbage collection to keep highly written objects in DRAM.
Distribution of **writes** in GC runtime

70% of writes
Distribution of **writes** in GC runtime

- **70%** of writes in the **nursery**
- **22%** to 2% of objects in the **mature** compartment
Contribution
Write-Rationing Garbage Collectors mature

DRAM

PCM
Two write-rationing garbage collectors

Kingsguard-Nursery

Kingsguard-Writers
Heap organization in **DRAM**

- **nursery**
- GC
- **mature**
- **large**

DRAM
KG-N Kingsguard-Nursery

nursery GC mature large

DRAM

PCM
KG-W Kingsguard-Writers

nursery

mature

large

observer

DRAM

mature

large

PCM
Observing writes

Object format

| header | references | primitives |

Write barrier sets a header bit on object writes

Write barrier configurations

Observe references

Observe references and primitives
Additional optimizations in **KG-W**

Large object optimization
- Allocate selected large objects in **DRAM**

Metadata optimization
- Allocate **PCM** metadata in **DRAM**
Large object optimization

nursery

½ of remaining nursery

large

Monitor PCM write rate to turn
Metadata optimization

Mature

Meta

Full-heap GC: Mark live PCM objects

KG-W: Keep mark bytes of PCM objects in DRAM
Metadata optimization

Full-heap GC: Mark live PCM objects

KG-W: Keep mark bytes of PCM objects in DRAM

\[
\text{address_mark_bit} = \text{start_meta} + \text{idx_pcm_obj}
\]
Evaluation Methodology

Hardware
(1) Simulator
(2) Real

Software
Jikes research virtual machine
Java applications
Simulation with Sniper

7 DaCapo applications

4 cores, 1 MB per core LLC

Scale simulated rates to a 32 core machine using trends from real hw
Memory systems

Homogeneous
 32 GB DRAM
 32 GB PCM

Hybrid
 1 GB DRAM
 32 GB PCM

PCM parameters
 4X read latency
 4X write energy
 10 M writes/cell
PCM lifetimes

- PCM-Only
- KG-N
- KG-W

PCM alone is not practical
PCM lasts more than 10 years with KG-W
EDP reduction compared to DRAM

EDP: Energy Delay Product

KG-W has 35% better EDP than DRAM-Only
Emulation on NUMA hardware

DRAM: Socket 0

PCM: Socket 1

Modify JVM to divide the heap in DRAM and PCM

Use Intel perf monitor to measure writes
PCM write rates on NUMA hardware

KG-N reduces write rate by 3.8X over **PCM-Only**

KG-W reduces write rate by 1.9X over **KG-N**
Crystal Gazer: Profile-Driven Write-Rationing Garbage Collection for Hybrid Memories
Takeaways

Promising to monitor heaps at a fine granularity

Write-rationing GC makes PCM practical as main memory

Similar conclusion with different evaluation methods