Random-Access LDPC Codes

Eshed Ram Yuval Cassuto
Andrew and Erna Viterbi Department of Electrical Engineering
Technion – Israel Institute of Technology, Haifa 32000, Israel
E-mails: {s6eshedr@campus, ycassuto@ee}.technion.ac.il

Abstract—New types of LDPC codes motivated by practical storage applications are presented. LDPCL codes (suffix ‘L’ stands for locality) can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus providing fast random access to the coded information. The same code can also be decoded globally using the entire code block (as usual), for increased data reliability. We present constructions of LDPCL and spatially-coupled (SC) LDPCL codes that enable random access, and we exemplify their benefits over ordinary LDPC codes.

1. INTRODUCTION

The growing demand for denser storage devices results in an increase in their error rates. Since in storage every decoding failure implies data loss, storage applications require very strong error-correcting codes (ECCs). Low-density parity-check (LDPC) codes and spatially-coupled (SC) LDPC codes with their low-complexity iterative decoding algorithm Belief-Propagation are powerful methods to achieve this storage reliability with high rates. Another key feature for modern storage devices is fast access, i.e., low-latency high-throughput read operations with moderate block sizes. This feature conflicts with the stringent reliability requirements in devices.

This inherent conflict motivates a coding scheme that enables fast read access to small (sub) blocks with modest data protection and low complexity. In case of a decoding failure, a high data-protection “safety net” in the form of a data protection and low complexity. In case of a decoding failure, a high data-protection “safety net” in the form of a data protection and low complexity. In case of a decoding failure, a high data-protection “safety net” in the form of a data protection and low complexity. In case of a decoding failure, a high data-protection “safety net” in the form of a data protection and low complexity.

2. LDPCL Codes

Every LDPC code can be represented by a bipartite graph (Tanner graph) with nodes partitioned to variable nodes (VN) and check nodes (CN). We LDPCL codes of length $N = M n$ through multi-block Tanner graph. In these graphs, the VN are divided to M disjoint sets of size n each, and the CNs are divided into two sets: local CNs and joint CNs. The graph construction is constrained such that each local CN is connected only to VN that are in the same sub-block; this constraint ensures sub-block decoding. The joint CN connections have no constraints. We denote by $\lambda_{L,i}$ (resp. $\rho_{L,i}$) the fraction of local edges connected to VNs (resp. CNs) with local-degree (resp. degree) i. We call $\{\lambda_{L,i}, \rho_{L,i}\}$ local-degree distributions. The joint-degree distributions $\{\lambda_{J,i}, \rho_{J,i}\}$ are defined similarly but with an important difference: we allow VN to have joint degrees 0 or 1. This turns out to be necessary to increase the code rate. We use P_0 to denote the fraction of jointly-unconnected VN. The parameters $M, n, \lambda_{L}, \lambda_{J}, \rho_{L}, \rho_{J}, P_0$ define a family of LDPCL codes, with a design rate given by $R = 1 - \int_{0}^{P_{0}} \frac{\rho_{L}}{\lambda_{L}} - \int_{0}^{\bar{P}_{0}} \frac{\rho_{J}}{\lambda_{J}} (1 - P_{0})$.

3. SC-LDPCL Codes

SC-LDPCL codes are LDPC codes in which the sparse parity-check matrix has a band-diagonal structure. SC-LDPCL
codes were shown to have many desired properties. For example, threshold saturation [3], linear-growth of minimum distance [4] and linear-growth of minimal trapping sets of typical codes from the ensemble [5].

One way to construct a SC-LDPC code is via protographs. A protograph is a small bipartite graph \(\mathcal{G} = (V \cup C, \mathcal{E}) \), where \(V \), \(C \) and \(\mathcal{E} \) are the sets of VN, CNs and edges, respectively. A Tanner graph is generated from a protograph \(\mathcal{G} \) by a lifting operation ("copy-and-permute") specified by a parameter \(L \) (see [4]). Let \(1^{l \times r} \) be an all-ones bi-adjacency matrix with \(l \) rows and \(r \) columns representing an \((l, r)\)-regular protograph. An \((l, r)\)-regular SC-LDPC protograph is constructed by diagonally placing copies of \((B_1; B_2) \), where \(B_1, B_2 \) are non-negative \(l \times r \) matrices such that \(B_1 + B_2 = 1^{l \times r} \) (the results readily extend to coupling more matrices). For example, the spatially-coupled \((3, 6)\) protograph is generated by \(B_1 = (v_1; v_2; v_3) \), where \(v_1 = (1, 1, 0, 0, 0, 0) \), \(v_2 = (1, 1, 1, 1, 0, 0) \), \(v_3 = (1, 1, 1, 1, 1, 1) \).

To the best of our knowledge, existing constructions of SC-LDPC codes do not enable sub-block access (for example, the \((l, r)\) SC-LDPC ensemble from [4, Definition 3] with \(l = \gcd(l, r) \)). This motivates a construction of \((l, r)\)-regular random-access SC-LDPC codes [7]:

Construction 1. Let \(t \in \{1, 2, \ldots, l-2\} \), and let \(A_1 \) be the \(t \times r \) matrix illustrated in Figure 2 (a), where \(\frac{1}{t+1} \) and \(\frac{0}{t+1} \) are length-\(\left\lfloor \frac{r}{t+1} \right\rfloor \) all-one vector and length-\(\left(r - t \left\lfloor \frac{r}{t+1} \right\rfloor \right) \) all-zero vector, respectively. Let \(A_2 \) be an all-ones \((l-t) \times r \) matrix. We build the \((l, r, t)\) protograph \(M \) copies of \((B_1; B_2)\) on the diagonal, where \(B_1 = (A_1; A_2) \) and \(B_2 = 1^{l \times r} - B_1 \).

We call the parameter \(1 \leq t \leq l-1 \) the coupling parameter. It serves as a design tool that controls the trade-off between the local and global decoding capabilities: small values of \(t \) implies high local noise resilience, and large values of \(t \) leads to high global data protection. Figure 2 (b) illustrates the \((l=3, r=6, t=1)\) SC-LDPC protograph with \(M = 3 \) SBs. Each sub-block in this protograph can be decoded independently to the others.

SC-LDPC codes can be decoded in a mode between local and global decoding, which we call *semi-global (SG)* decoding. SG decoding has a substantial complexity advantage over global decoding with a very small cost in data-protection. Consider a SC-LDPC protograph with \(M \) SBs, and assume that the user wants to extract SB \(m \in \{1 : M\} \). We call SB \(m \) the target. In SG decoding, the decoder uses \(d \) helper SBs to decode the target in two phases: the helper phase, and the target phase. In the former, helper SBs are decoded locally using information from other previously-decoded helper SBs, and in the latter, the target SB is decoded using information from its neighboring helper SBs. Figure 3 exemplifies SG decoding with \(d = 4 \) helper SBs. The helper phase consists of decoding helpers \(m-2 \) and \(m+2 \) locally, and decoding helpers \(m-1 \) and \(m+1 \) using the information from helpers \(m-2 \) and \(m+2 \), respectively. In the target phase, SB \(m \) is decoded using information from both SB \(m-1 \) and \(m+1 \).

REFERENCES

