Distributed Shared Persistent Memory

Yizhou Shan Shin-Yeh Tsai Yiying Zhang
Purdue University Purdue University Purdue University
ys@purdue.edu tsai4d6@purdue.edu yiying@purdue.edu
ABSTRACT distributed memory and distributed storage in DSPM. DSPM’s one-

Next-generation non-volatile memories (NVMs) will provide byte
addressability, persistence, high density, and DRAM-like perfor-
mance. They have the potential to benefit many datacenter applica-
tions. However, most previous research on NVMs has focused on
using them in a single machine environment. It is still unclear how
to best utilize them in distributed, datacenter environments.

We introduce Distributed Shared Persistent Memory (DSPM), a
new framework for using persistent memories in distributed data-
center environments. DSPM provides a new abstraction that allows
applications to both perform traditional memory load and store
instructions and to name, share, and persist their data.

We built Hotpot, a kernel-level DSPM system that provides low-
latency, transparent memory accesses, data persistence, data relia-
bility, and high availability. The key ideas of Hotpot are to integrate
distributed memory caching and data replication techniques and
to exploit application hints. We implemented Hotpot in the Linux
kernel and demonstrated its benefits by building a distributed graph
engine on Hotpot and porting a NoSQL database to Hotpot. Our
evaluation shows that Hotpot outperforms a recent distributed
shared memory system by 1.3X to 3.2X and a recent distributed
PM-based file system by 1.5X to 3.0x.

1 INTRODUCTION

Next-generation non-volatile memories (NVMs), such as 3DX-
point [4], phase change memory (PCM), spin-transfer torque mag-
netic memories (STTMs), and the memristor will provide byte ad-
dressability, persistence, high density, and DRAM-like performance.
These developments are poised to radically alter the landscape of
memory and storage technologies and have already inspired a host
of research projects [1, 12]. However, most previous research on
NVMs has focused on using them in a single machine environment.
Even though NVMs have the potential to greatly improve the per-
formance and reliability of large-scale applications, it is still unclear
how to best utilize them in distributed, datacenter environments.

This project takes a significant step towards the goal of using
NVMs in distributed datacenter environments. We propose Dis-
tributed Shared Persistent Memory (DSPM), a framework that pro-
vides a global, shared, and persistent memory space using a pool
of machines with NVMs attached at the main memory bus. Appli-
cations can perform native memory load and store instructions to
access both local and remote data in this global memory space and
can at the same time make their data persistent and reliable. DSPM
can benefit both single-node persistent-data applications that want
to scale out efficiently and shared-memory applications that want
to add durability to their data.

Unlike traditional systems with separate memory and storage
layers [2], we propose to use just one layer that incorporates both

layer approach eliminates the performance overhead of data mar-
shaling and unmarshaling, and the space overhead of storing data
twice. With this one-layer approach, DSPM can potentially pro-
vide the low-latency performance, vast persistent memory space,
data reliability, and high availability that many modern datacenter
applications demand.

Building a DSPM system presents its unique challenges. Adding
“Persistence” to Distributed Shared Memory (DSM) is not as simple
as just making in-memory data durable. Apart from data durability,
DSPM needs to provide two key features that DSM does not have:
persistent naming and data reliability. In addition to accessing data
in PM via native memory loads and stores, applications should
be able to easily name, close, and re-open their in-memory data
structures. User data should also be reliably stored in NVM and
sustain various types of failures; they need to be consistent both
within a node and across distributed nodes after crashes. To make
it more challenging, DSPM has to deliver these guarantees without
sacrificing application performance in order to preserve the low-
latency performance of NVMs.

We built Hotpot, a DSPM system in the Linux kernel. Hotpot of-
fers low-latency, direct memory access, data persistence, reliability,
and high availability to datacenter applications. It exposes a global
virtual memory address space to each user application and provides
a new persistent naming mechanism that is both easy-to-use and
efficient. Internally, Hotpot organizes and manages data in a flexible
way and uses a set of adaptive resource management techniques to
improve performance and scalability.

Hotpot builds on two main ideas to efficiently provide data re-
liability with distributed shared memory access. Our first idea is
to integrate distributed memory caching and data replication by
imposing morphable states on persistent memory (PM) pages.

In DSM, when applications on a node access shared data in re-
mote memory on demand, DSM caches these data copies in its local
memory for fast accesses and later evicts them when reclaiming
local memory space. Like DSM, Hotpot caches application-accessed
data in local PM and ensures the coherence of multiple cached
copies across nodes. But Hotpot also uses these cached data as per-
sistent replicas and ensures their reliability and crash consistency.

On the other hand, unlike distributed storage systems, which
creates extra data replicas to meet user-specified reliability require-
ments, Hotpot makes use of data copies that already exist in the
system when they were fetched to local due to application accesses.

In essence, every local copy of data serves two simultaneous pur-
poses. First, applications can access it locally without any network
delay. Second, by placing the fetched copy in PM, it can be treated
as a persistent replica for data reliability.

This seemingly-straightforward integration is not simple. Main-
taining wrong or outdated versions of data can result in inconsistent
data. To make it worse, these inconsistent data will be persistent in



PM. We carefully designed a set of protocols to deliver data relia-
bility and crash consistency guarantees while integrating memory
caching and data replication.

Our second idea is to exploit application behaviors and intentions
in the DSPM setting. Unlike traditional memory-based applications,
persistent-data-based applications, DSPM’s targeted type of appli-
cation, have well-defined data commit points where they specify
what data they want to make persistent. When a process in such
an application makes data persistent, it usually implies that the
data can be visible outside the process (e.g., to other processes or
other nodes). Hotpot utilizes these data commit points to also push
updates to cached copies on distributed nodes to avoid maintaining
coherence on every PM write. Doing so greatly improves the per-
formance of Hotpot, while still ensuring correct memory sharing
and data reliability.

2 MOTIVATION

DSPM is motivated by three datacenter trends: emerging hardware
PM technologies, modern data-intensive applications’ data shar-
ing, persistence, and reliability needs, and the availability of fast
datacenter network.

2.1 Persistent Memory and PM Apps

NVMs can attach directly to the main memory bus to form Per-
sistent Memory, or PM. If applications want to exploit all the low
latency and byte-addressability benefits of PM, they should di-
rectly access it via memory load and store instructions without
any software overheads [8] (we call this model durable in-memory
computation), rather than accessing it via a file system [1].

Unfortunately, most previous durable in-memory systems were
designed for the single-node environment. With modern datacenter
applications’ computation scale, we have to be able to scale out
these single-node PM systems.

2.2 Shared Memory Applications

Modern data-intensive applications increasingly need to access and
share vast amounts of data fast. Distributed Shared Memory (DSM)
takes the shared memory concept a step further by organizing a pool
of machines into a globally shared memory space. Researchers and
system builders have developed a host of software and hardware
DSM systems in the past few decades [2, 7].

However, although DSM scales out shared-memory applications,
there has been no persistent-memory support for DSM. DSM sys-
tems all had to checkpoint to disks [10]. Memory persistence can
allow these applications to checkpoint fast and recover fast [6].

2.3 Fast Network and RDMA

Datacenter network performance has improved significantly over
the past decades. InfiniBand (IB) NICs and switches support high
bandwidth ranging from 40 to 100 Gbps. Remote Direct Memory
Access (RDMA) technologies that provide low-latency remote mem-
ory accesses have become more mature for datacenter uses in re-
cent years [11]. These network technology advances make remote-
memory-based systems [7] more attractive than decades ago.

2.4 Lack of Distributed PM Support

Many large-scale datacenter applications require fast access to vast
amounts of persistent data and could benefit from PM’s perfor-
mance, durability, and capacity benefits. For PMs to be successful in
datacenter environments, they have to support these applications.
However, neither traditional distributed storage systems or DSM
systems are designed for PM. Traditional distributed storage sys-
tems [3] target slower, block-based storage devices. Using them on
PMs will result in excessive software and network overheads that
outstrip PM’s low latency performance [12]. DSM systems were
designed for fast, byte-addressable memory, but lack the support
for data durability and reliability.

Octopus [5] is a recent RDMA-enabled distributed file system
built for PM. Octopus and our previous work Mojim [12] are the
only distributed PM-based systems that we are aware of. Octopus
was developed in parallel with Hotpot and has a similar goal as
Hotpot: to manage and expose distributed PM to datacenter ap-
plications. However, Octopus uses a file system abstraction and is
built in the user level without any data reliability guarantee.

3 CONCLUSION

We introduce the DSPM model and use a one-layer approach to
built Hotpot by integrating memory coherence and data replication.
We believe DSPM will benefit datacenter applications, and we hope
more researchers will look into DSPM to expolore more possibilities.
The original paper was first published at SoCC’17 [9]. The paper is
available at: wuklab.io/hotpot-socc17.pdf.

REFERENCES

[1] S.R.Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and
J. Jackson. System software for persistent memory. In Proceedings of the EuroSys
Conference (EuroSys '14), Amsterdam, The Netherlands, April 2014.

[2] P. Ferreira and M. Shapiro. Larchant: Persistence by Reachability in Distributed
Shared Memory through Garbage Collection. In Distributed Computing Systems,
1996., Proceedings of the 16th International Conference on, 1996.

[3] S.Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP "03), Bolton
Landing, New York, October 2003.

[4] Intel Corporation. Intel Non-Volatile Memory 3D XPoint. http://intel.ly/2sq0w09.

[5] Y.Lu,]. Shu, Y. Chen, and T. Li. Octopus: an rdma-enabled distributed persistent
memory file system. In 2017 USENIX Annual Technical Conference (USENIX ATC
17), Santa Clara, CA, 2017.

[6] D.Narayanan and O. Hodson. Whole-System Persistence. In Proceedings of the
17th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS °12), London, United Kingdom, March 2012.

[7] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. Latency-
Tolerant Software Distributed Shared Memory. In Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference (ATC ’15), Santa Clara, Califor-
nia, July 2015.

[8] S.Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture, ISCA ’14,
Piscataway, NJ, USA, 2014.

[9] Y. Shan, S.-Y. Tsai, and Y. Zhang. Distributed shared persistent memory. In
Proceedings of the 8th Annual Symposium on Cloud Computing (SOCC ’17), Santa
Clara, CA, USA, September 2017.

[10] M. Stumm and S. Zhou. Fault tolerant distributed shared memory algorithms. In
Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing
1990, Dec 1990.

[11] S.-Y. Tsai and Y. Zhang. Lite kernel rdma support for datacenter applications. In

Proceedings of the 26nd ACM Symposium on Operating Systems Principles (SOSP

’17), Shanghai, China, 2017.

Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A Reliable and Highly-

Available Non-Volatile Memory System. In Proceedings of the 20th International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’15), Istanbul, Turkey, March 2015.

=
&N


http://intel.ly/2sq0w09

	Abstract
	1 Introduction
	2 Motivation
	2.1 Persistent Memory and PM Apps
	2.2 Shared Memory Applications
	2.3 Fast Network and RDMA
	2.4 Lack of Distributed PM Support

	3 Conclusion
	References

