Order-Optimal Permutation Codes in the Generalized Cayley Metric

Siyi Yang, Clayton Schoeny, Lara Dolecek
LORIS, Electrical and Computer Engineering, UCLA
March 12th, 2018
Outline

1 Motivation
 • Background
 • Objective

2 Theoretical Analysis
 • Distances of Interest
 • Order-Optimal Codes

3 Construction
 • Encoding Schemes
 • Decoding Schemes
 • Rate Analysis
 • Systematic Codes

4 Conclusion
 • Conclusion and Future Work
Outline

1 Motivation
 - Background
 - Objective

2 Theoretical Analysis
 - Distances of Interest
 - Order-Optimal Codes

3 Construction
 - Encoding Schemes
 - Decoding Schemes
 - Rate Analysis
 - Systematic Codes

4 Conclusion
 - Conclusion and Future Work
Applications

- Flash memories: charge leakage between cells [1]

Applications

- Flash memories: charge leakage between cells [1]

![Diagram showing charge leakage between cells]

- Genome resequencing: gene rearrangement in a chromosome [2]

![Diagram showing genome rearrangements]

Applications

- Flash memories: charge leakage between cells [1]

- Genome resequencing: gene rearrangement in a chromosome [2]

- Cloud storage system: rearrangements of items in multiple folders

Measures in Permutation Codes

- Common measures
Measures in Permutation Codes

- Common measures
 - Kendall-τ metric: transpositions [3]

![Diagram showing transpositions]

Measures in Permutation Codes

- **Common measures**
 - Kendall-τ metric: transpositions [3]
 - Ulam metric: translocation [4]

Measures in Permutation Codes

- **Common measures**
 - Kendall-τ metric: transpositions [3]

 ![Kendall-τ Metric Example]
 - Ulam metric: translocation [4]

 ![Ulam Metric Example]

- **Measure under discussion**

Motivation

Objectives

Measures in Permutation Codes

- Common measures
 - **Kendall-τ metric**: transpositions [3]

 ![Kendall-τ metric example]

 - **Ulam metric**: translocation [4]

 ![Ulam metric example]

- Measure under discussion
 - **Generalized Cayley metric**: generalized transposition [5]

 ![Generalized Cayley metric example]

- No restrictions on the lengths and positions of the translocated segments

Ultimate Goal

Objective

Construction of order-optimal codes in the generalized Cayley metric
Objective

- Construction of order-optimal codes in the generalized Cayley metric

Prior work [6]

Ultimate Goal

- **Objective**
 - Construction of order-optimal codes in the generalized Cayley metric

- **Prior work [6]**
 - Based on the error-correcting codes in the Ulam metric [7]

Ultimate Goal

- **Objective**
 - Construction of order-optimal codes in the generalized Cayley metric
- **Prior work [6]**
 - Based on the error-correcting codes in the Ulam metric [7]
 - Interleaving based: induce a redundancy of $O(N)$ bits, where N is the codelength

Ultimate Goal

- **Objective**
 - Construction of order-optimal codes in the generalized Cayley metric

- **Prior work [6]**
 - Based on the error-correcting codes in the Ulam metric [7]
 - Interleaving based: induce a redundancy of $O(N)$ bits, where N is the codelength

- **Ultimate goal**
 - Redundancy for an order-optimal code that corrects t generalized transposition errors: $O(t \log N)$ bits

Outline

1 Motivation
 - Background
 - Objective

2 Theoretical Analysis
 - Distances of Interest
 - Order-Optimal Codes

3 Construction
 - Encoding Schemes
 - Decoding Schemes
 - Rate Analysis
 - Systematic Codes

4 Conclusion
 - Conclusion and Future Work
Generalized Cayley Distance

- **Generalized transposition** $\phi(i_1, j_1, i_2, j_2)$:
 - $\phi(i_1, j_1, i_2, j_2) \in S_N$, $i_1 \leq j_1 < i_2 \leq j_2 \in [N]$, S_N is the symmetric group of permutations with length N
 - A permutation obtained from swapping the segments $e[i_1, j_1]$ and $e[i_2, j_2]$ in the identity permutation
Generalized Cayley Distance

- **Generalized transposition** $\phi(i_1, j_1, i_2, j_2)$:
 - $\phi(i_1, j_1, i_2, j_2) \in S_N$, $i_1 \leq j_1 < i_2 \leq j_2 \in [N]$, S_N is the symmetric group of permutations with length N
 - A permutation obtained from swapping the segments $e[i_1, j_1]$ and $e[i_2, j_2]$ in the identity permutation

![Diagram showing a permutation transformation with generalized transposition $\phi(2, 4, 6, 7)$]
Generalized Cayley Distance

- **Generalized transposition** $\phi(i_1, j_1, i_2, j_2)$:
 - $\phi(i_1, j_1, i_2, j_2) \in S_N$, $i_1 \leq j_1 < i_2 \leq j_2 \in [N]$, S_N is the symmetric group of permutations with length N
 - A permutation obtained from swapping the segments $e[i_1, j_1]$ and $e[i_2, j_2]$ in the identity permutation

\[\phi(2, 4, 6, 7) \]

- $\pi_2 = \pi_1 \circ \phi$
Generalized Cayley Distance

- **Generalized transposition** $\phi(i_1, j_1, i_2, j_2)$:
 - $\phi(i_1, j_1, i_2, j_2) \in S_N, \ i_1 \leq j_1 < i_2 \leq j_2 \in [N]$, S_N is the symmetric group of permutations with length N
 - A permutation obtained from swapping the segments $e[i_1, j_1]$ and $e[i_2, j_2]$ in the identity permutation

- $\pi_2 = \pi_1 \circ \phi$

- **Generalized Cayley distance** $d_G(\pi_1, \pi_2)$:
 - The minimum number of generalized transpositions that is needed to obtain the permutation π_2 from π_1,
 $$d_G(\pi_1, \pi_2) \triangleq \min \{ \exists \ \phi_1, \phi_2, \ldots, \phi_d \in T_N, \ s.t., \ \pi_2 = \pi_1 \circ \phi_1 \circ \phi_2 \cdots \circ \phi_d \}. $$
Theoretical Foundation

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
- Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in - block permutation distance
Theoretical Analysis

Distances of Interest

Theoretical Foundation

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in - block permutation distance

- **Characteristic set** $A(\pi) \triangleq \{ (\pi(i), \pi(i+1)) | 1 \leq i \leq N \}$
Theoretical Foundation

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in - block permutation distance

- **Characteristic set** $A(\pi) \triangleq \{(\pi(i), \pi(i + 1)) | 1 \leq i \leq N\}$

- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)
Theoretical Foundation

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in - block permutation distance

- **Characteristic set** $A(\pi) \triangleq \{ (\pi(i), \pi(i+1)) | 1 \leq i \leq N \}$

- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)
Theoretical Foundation

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in - block permutation distance
- **Characteristic set** $A(\pi) \triangleq \{(\pi(i), \pi(i+1))|1 \leq i \leq N\}$
- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)

![Diagram of characteristic set and transpositions]
Theoretical Foundation

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in - block permutation distance

- Characteristic set $A(\pi) \triangleq \{(\pi(i), \pi(i + 1))|1 \leq i \leq N\}$

- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)
Theoretical Analysis

Distances of Interest

Theoretical Foundation

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in - block permutation distance

- Characteristic set $A(\pi) \triangleq \{(\pi(i), \pi(i+1))|1 \leq i \leq N\}$

Observation

- Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)
Block Permutation Distance

Block permutation distance $d_B(\pi_1, \pi_2)$:

- $d_B(\pi_1, \pi_2) = d$ iff $\exists \sigma \in \mathbb{D}_{d+1}$ such that $\forall 1 \leq i \leq d$, $\sigma(i + 1) \neq \sigma(i) + 1$, $\psi_k = \pi_1[i_{k-1} + 1 : i_k]$ for some $0 = i_0 < i_1 \cdots < i_d < i_{d+1} = N$, and $1 \leq k \leq d + 1$, such that

\[
\pi_1 = (\psi_1, \psi_2, \cdots, \psi_{d+1}),
\]
\[
\pi_2 = (\psi_{\sigma(1)}, \psi_{\sigma(2)}, \cdots, \psi_{\sigma(d+1)}).
\]
Block Permutation Distance

- **Block permutation distance** $d_B(\pi_1, \pi_2)$:
 - $d_B(\pi_1, \pi_2) = d$ iff $\exists \sigma \in \mathbb{D}_{d+1}$ such that $\forall 1 \leq i \leq d$, $\sigma(i + 1) \neq \sigma(i) + 1$, $\psi_k = \pi_1 [i_{k-1} + 1 : i_k]$ for some $0 = i_0 < i_1 \cdots < i_d < i_{d+1} = N$, and $1 \leq k \leq d + 1$, such that

 $$\pi_1 = (\psi_1, \psi_2, \cdots, \psi_{d+1}),$$

 $$\pi_2 = (\psi_{\sigma(1)}, \psi_{\sigma(2)}, \cdots, \psi_{\sigma(d+1)}).$$

Example

<table>
<thead>
<tr>
<th>π_1</th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>$A(\pi_1)$</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>π_2</th>
<th>ψ_1</th>
<th>ψ_4</th>
<th>ψ_3</th>
<th>ψ_2</th>
<th>ψ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>$A(\pi_2)$</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>
Block Permutation Distance

- **Block permutation distance** $d_B(\pi_1, \pi_2)$:

 $d_B(\pi_1, \pi_2) = d$ iff $\exists \sigma \in \mathbb{D}_{d+1}$ such that $\forall 1 \leq i \leq d$, $\sigma(i + 1) \neq \sigma(i) + 1$, $\psi_k = \pi_1[i_{k-1} + 1 : i_k]$ for some $0 = i_0 < i_1 \cdots < i_d < i_{d+1} = N$, and $1 \leq k \leq d + 1$, such that

 $\pi_1 = (\psi_1, \psi_2, \cdots, \psi_{d+1})$,

 $\pi_2 = (\psi_{\sigma(1)}, \psi_{\sigma(2)}, \cdots, \psi_{\sigma(d+1)})$.

- $d_B(\pi_1, \pi_2) = \frac{1}{2}|A(\pi_1) \Delta A(\pi_2)|$
Block Permutation Distance

- **Block permutation distance** $d_B(\pi_1, \pi_2)$:
 - $d_B(\pi_1, \pi_2) = d$ iff $\exists \sigma \in \mathbb{D}_{d+1}$ such that $\forall 1 \leq i \leq d$, $\sigma(i+1) \neq \sigma(i) + 1$, $\psi_k = \pi_1[i_{k-1} + 1 : i_k]$ for some $0 = i_0 < i_1 \cdots < i_d < i_{d+1} = N$, and $1 \leq k \leq d+1$, such that
 \[
 \pi_1 = (\psi_1, \psi_2, \cdots, \psi_{d+1}), \\
 \pi_2 = (\psi_{\sigma(1)}, \psi_{\sigma(2)}, \cdots, \psi_{\sigma(d+1)}).
 \]

- Metric embedding:
 \[
 d_B(\pi_1, \pi_2) = \frac{1}{2} |A(\pi_1) \Delta A(\pi_2)|
 \]

- **Metric embedding**:
 \[
 d_G(\pi_1, \pi_2) \leq d_B(\pi_1, \pi_2) \leq 4d_G(\pi_1, \pi_2)
 \]
Definitions and Rates of Order-Optimal Codes

- **t-Generalized Cayley code** $C_G(N, t)$
 - Corrects t generalized transposition errors, $d_{G,\text{min}} \geq 2t + 1$
Definitions and Rates of Order-Optimal Codes

- **t-Generalized Cayley code** $C_G(N, t)$
 - Corrects t generalized transposition errors, $d_{G,\text{min}} \geq 2t + 1$

- **t-Block permutation code** $C_B(N, t)$
 - Minimum block permutation distance $d_{B,\text{min}} \geq 2t + 1$
Definitions and Rates of Order-Optimal Codes

- **t-Generalized Cayley code** $C_G(N, t)$
 - Corrects t generalized transposition errors, $d_{G,\text{min}} \geq 2t + 1$

- **t-Block permutation code** $C_B(N, t)$
 - Minimum block permutation distance $d_{B,\text{min}} \geq 2t + 1$

- Optimal code rates: $R_{G,\text{opt}}(N, t), R_{B,\text{opt}}(N, t)$
Definitions and Rates of Order-Optimal Codes

- **t-Generalized Cayley code** \(C_G(N, t) \)
 - Corrects \(t \) generalized transposition errors, \(d_{G,\min} \geq 2t + 1 \)

- **t-Block permutation code** \(C_B(N, t) \)
 - Minimum block permutation distance \(d_{B,\min} \geq 2t + 1 \)

- Optimal code rates: \(R_{G,\text{opt}}(N, t) \), \(R_{B,\text{opt}}(N, t) \)

- Order-optimal \(4t \)-block permutation codes are order-optimal \(t \)-generalized Cayley codes

Theorem

The optimal rates satisfy the following inequalities,

\[
1 - c_1 \cdot \frac{2t + 1}{N} \leq R_{B,\text{opt}}(N, t) \leq 1 - \frac{t}{N},
\]

\[
1 - c_1 \cdot \frac{8t + 1}{N} \leq R_{G,\text{opt}}(N, t) \leq 1 - c_2 \cdot \frac{4t}{N},
\]

for fixed \(t \) and sufficiently large \(N \), where \(c_1 = 1 + \frac{2 \log e}{\log N} \), \(c_2 = 1 - \frac{3(\log t + 1)}{4(\log N - 1)} \).
Outline

1 Motivation
 - Background
 - Objective

2 Theoretical Analysis
 - Distances of Interest
 - Order-Optimal Codes

3 Construction
 - Encoding Schemes
 - Decoding Schemes
 - Rate Analysis
 - Systematic Codes

4 Conclusion
 - Conclusion and Future Work
Key Idea in Encoding Scheme

\[
p_1 \\
A(p_1) \\
g(p_1)
\]
Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π
Key Idea in Encoding Scheme

<table>
<thead>
<tr>
<th>π_1</th>
<th>$A(\pi_1)$</th>
<th>$g(\pi_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2, 3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3, 11</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6, 7</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8, 9, 10, 15</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10, 15</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12, 13</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14, 6, 7</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16, 4, 5</td>
<td>16</td>
</tr>
</tbody>
</table>

Step 1: Compute the characteristic set $A(\pi)$ for every π

Step 2: Map $A(\pi)$ onto \mathbb{F}_q as $g(\pi)$, where q is a prime number such that $N^2 - N \leq q \leq 2N^2 - 2N$ (*Bertrand's Postulate*)
Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π

Step 2: Map $A(\pi)$ onto \mathbb{F}_q as $g(\pi)$, where q is a prime number such that $N^2 - N \leq q \leq 2N^2 - 2N$ (Bertrand’s Postulate)

Step 3: Compute the parity check sum $h_t(\pi)$. Here $h_t(\pi) \triangleq (\alpha_1, \alpha_2, \cdots, \alpha_{4t-1})$, $\alpha_i = \sum_{b \in g(\pi)} b^i$, $1 \leq i \leq 4t - 1$
Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π

Step 2: Map $A(\pi)$ onto \mathbb{F}_q as $g(\pi)$, where q is a prime number such that $N^2 - N \leq q \leq 2N^2 - 2N$ (*Bertrand’s Postulate*)

Step 3: Compute the parity check sum $h_t(\pi)$. Here $h_t(\pi) \triangleq (\alpha_1, \alpha_2, \cdots, \alpha_{4t-1})$, $\alpha_i = \sum_{b \in g(\pi)} b^i$, $1 \leq i \leq 4t - 1$

Step 4: Permutations with the same α constitute a t-block permutation code $C_\alpha(N, t)$
Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π

Step 2: Map $A(\pi)$ onto \mathbb{F}_q as $g(\pi)$, where q is a prime number such that $N^2 - N \leq q \leq 2N^2 - 2N$ (*Bertrand’s Postulate*)

Step 3: Compute the parity check sum $h_t(\pi)$. Here $h_t(\pi) \triangleq (\alpha_1, \alpha_2, \cdots, \alpha_{4t-1})$, $\alpha_i = \sum_{b \in g(\pi)} b^i$, $1 \leq i \leq 4t - 1$

Step 4: Permutations with the same α constitute a t-block permutation code $C_{\alpha}(N, t)$

Note: $C_{\alpha}(N, t)$ with the maximum cardinality is order-optimal
Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π, $d_B(\pi, \pi') \leq t$
Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π, $d_B(\pi, \pi') \leq t$

Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π'
Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π, $d_B(\pi, \pi') \leq t$

Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π'

Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$
Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π, $d_B(\pi, \pi') \leq t$

Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π'

Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$

- f_2 provides incomplete information about the roots of f_1
- α provides complete information about the $4t - 1$ coefficients of f_1
Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π, $d_B(\pi, \pi') \leq t$

Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π'

Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$

Step 2: Compute $f_1(X) = f(X; \pi)$ from α and f_2
Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π, $d_B(\pi, \pi') \leq t$

Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π'

Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$

Step 2: Compute $f_1(X) = f(X; \pi)$ from α and f_2

Step 3: Compute $g(\pi)$, $A(\pi)$ and π
Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π, $d_B(\pi, \pi') \leq t$

Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π'

Note: **Characteristic function** $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$

Step 2: Compute $f_1(X) = f(X; \pi)$ from α and f_2

Step 3: Compute $g(\pi)$, $A(\pi)$ and π
Rate Comparison with Interleaving Based Codes

Lemma

Let $R_G(N, t)$, $R_{\rho_g}C(N, t)$ be the rate of our proposed code and the existing interleaving-based code, respectively. Then $R_G(N, t) > R_{\rho_g}C(N, t)$ when $t < \frac{N}{(16 \log N + 8)}$ for sufficiently large N.

Proof.

We know from previous discussion and [a] that

$$R_{\rho_g}C(N, t) < 1 - \frac{2N + \mathcal{O}((\log N)^2)}{N \log N - (\log e)N + \frac{1}{2} \log N} \sim 1 - \frac{2}{\log N},$$

$$R_G(N, t) > 1 - \frac{32t \log N + 16t}{N \log N - (\log e)N + \frac{1}{2} \log N} \sim 1 - \frac{32t}{N},$$

$$R_G(N, t) - R_{\rho_g}C(N, t) > 0 \text{ when } t < \frac{N}{(16 \log N + 8)} \text{ for sufficiently large } N.$$

Extension

- Problems in the previous construction
Extension

- Problems in the previous construction
 - Not explicitly constructive
Extension

- Problems in the previous construction
 - Not explicitly constructive
 - Non-systematic

Solution

Constructing systematic codes in the generalized Cayley metric

Extended work submitted to IEEE Transactions on Information Theory, also available at arxiv: https://arxiv.org/abs/1803.04314

Siyi Yang, Clayton Schoeny, Lara Dolecek

Order-Optimal Permutation Codes in the Generalized Cayley Metric
Extension

- Problems in the previous construction
 - Not explicitly constructive
 - Non-systematic
 - Difficult to identify a bijection between the transmitted messages and the codewords

Solution

Constructing systematic codes in the generalized Cayley metric

Extended work submitted to IEEE Transactions on Information Theory, also available at arxiv: https://arxiv.org/abs/1803.04314
Extension

- Problems in the previous construction
 - Not explicitly constructive
 - Non-systematic
 - Difficult to identify a bijection between the transmitted messages and the codewords

- Solution
 - Constructing systematic codes in the generalized Cayley metric
Extension

- Problems in the previous construction
 - Not explicitly constructive
 - Non-systematic
 - Difficult to identify a bijection between the transmitted messages and the codewords

- Solution
 - Constructing systematic codes in the generalized Cayley metric
Main idea: insert k elements $[N + 1 : N + k]$ into the length N permutations at positions decided by their parity check sums.
Main idea: insert k elements $[N + 1 : N + k]$ into the length N permutations at positions decided by their parity check sums.

- Find an injection $\eta: \mathbb{F}_q^{4t-1} \rightarrow [N]^k$ for some $k \sim \mathcal{O}(t)$.
Main idea: insert k elements $[N + 1 : N + k]$ into the length N permutations at positions decided by their parity check sums

- Find an injection $\eta : \mathbb{F}_q^{4t-1} \rightarrow [N]^k$ for some $k \sim \mathcal{O}(t)$
- Permutations with the same parity check sum keep a distance greater than $2t$
Main idea: insert k elements $[N + 1 : N + k]$ into the length N permutations at positions decided by their parity check sums

- Find an injection $\eta : \mathbb{F}_q^{4t-1} \rightarrow [N]^k$ for some $k \sim O(t)$
- Permutations with the same parity check sum keep a distance greater than $2t$
- Permutations with different parity check sums
Main idea: insert k elements $[N + 1 : N + k]$ into the length N permutations at positions decided by their parity check sums

- Find an injection $\eta: \mathbb{F}_q^{4t-1} \to [N]^k$ for some $k \sim O(t)$

- Permutations with the same parity check sum keep a distance greater than $2t$

- Permutations with different parity check sums
 - Each element in $\eta(\alpha)$ is identical to an element in π
Main idea: insert k elements $[N + 1 : N + k]$ into the length N permutations at positions decided by their parity check sums

- Find an injection $\eta : \mathbb{F}_q^4t^{-1} \rightarrow [N]^k$ for some $k \sim O(t)$

- Permutations with the same parity check sum keep a distance greater than $2t$

- Permutations with different parity check sums
 - Each element in $\eta(\alpha)$ is identical to an element in π
 - Insert $N + i$, $1 \leq i \leq k$ sequentially after the element in π identical to the i-th element in $\eta(\alpha)$
Main idea: insert k elements $[N+1 : N+k]$ into the length N permutations at positions decided by their parity check sums

- Find an injection $\eta: \mathbb{F}_q^{4t-1} \to [N]^k$ for some $k \sim O(t)$
- Permutations with the same parity check sum keep a distance greater than $2t$
- Permutations with different parity check sums
 - Each element in $\eta(\alpha)$ is identical to an element in π
 - Insert $N+i$, $1 \leq i \leq k$ sequentially after the element in π identical to the i-th element in $\eta(\alpha)$
 - New permutations also have distance at least $2t+1$
Outline

1 Motivation
 • Background
 • Objective

2 Theoretical Analysis
 • Distances of Interest
 • Order-Optimal Codes

3 Construction
 • Encoding Schemes
 • Decoding Schemes
 • Rate Analysis
 • Systematic Codes

4 Conclusion
 • Conclusion and Future Work
Conclusion and Future Work

- Conclusion
Conclusion and Future Work

- Conclusion
 - We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric
Conclusion and Future Work

Conclusion
- We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric.
- We provide a coding scheme of order-optimal codes.

Future work
- Binary codes in the generalized Cayley metric.
Conclusion and Future Work

- Conclusion
 - We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric
 - We provide a coding scheme of order-optimal codes
 - We prove that our code is more rate efficient than the existing permutation codes based on interleaving

Future work

- Binary codes in the generalized Cayley metric
Conclusion and Future Work

Conclusion

- We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric
- We provide a coding scheme of order-optimal codes
- We prove that our code is more rate efficient than the existing permutation codes based on interleaving
- We extend our result by developing a construction of systematic permutation codes in this metric that is order-optimal
Conclusion and Future Work

Conclusion
- We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric.
- We provide a coding scheme of order-optimal codes.
- We prove that our code is more rate efficient than the existing permutation codes based on interleaving.
- We extend our result by developing a construction of systematic permutation codes in this metric that is order-optimal.

Future work
- Binary codes in the generalized Cayley metric.
Thank you!