A part of this work has been accepted and presented in ISCA 2018 conference and a part is underview in ISCA 2018 conference.

ABSTRACT

Machine learning has been widely investigated as an autonomous solution which performs diverse classification tasks, e.g., voice recognition and visual object detection. However, running these tasks in conventional computer architectures requires high energy consumption due to large data movement and memory accesses. In this paper, we propose a novel accelerator design, called CHOIR, which performs the classification tasks based on a co-designed boosting algorithm. Since CHOIR processes most classification tasks inside emerging non-volatile memory blocks, we can significantly mitigate computation overhead incurred by the enormous amount of data. In our evaluation conducted on circuit- and device-level simulations, we show that the CHOIR successfully performs practical classification tasks with high accuracy, e.g., more than 96% for practical image recognition problems. In addition, our design significantly improves the performance and energy efficiency by up to 376x and 1896x, respectively, compared to the existing processor-based implementation.

1. CHOIR DESIGN

The proposed CHOIR accelerates the classification model training and inference by the interplay of three main algorithms: Genetic Algorithm (GA), Decision Tree (DT), and AdaBoost. Figure 1 shows an architectural overview of the proposed CHOIR design. The two main modules, trainer and predictor, perform the model learning and the inference task, respectively. All sub block arrays in the two modules are designed using the resistive memory and the multi-stage CAMs discussed in Section 1.1, while the microcontroller executes high-level algorithm controls and invokes their in-memory computing functionalities.

In the model learning step, CHOIR learns classification rules from the given training dataset and generates multiple decision trees as the base learners. There are two components dedicated for the model training, sample selector and DT learner. The sample selector consists of Chromosome MEM blocks, which implement a genetic algorithm (GA), and RepCH-MEM blocks, which store the output of the algorithm. The DT Learner consists of Stump Generator blocks and others are designed as normal memory blocks. This component trains a decision tree by recursively generating decision stumps using the output of sample selector, i.e., RepCH-MEM. The generated decision tree is stored into a DT-MEM of the predictor module as a base learner. We generate multiple decision trees for a classification problem based on the AdaBoost algorithm.

In the prediction step, the generated DT-MEMs of a predictor module are used to perform the class inference. Note that CHOIR can store different sets of DT-MEMs for multiple applications. In fact, the size of one DT-MEM is reasonably small, e.g., around 8 Kbytes in our experimental setup. This allows us to support various applications with small memory footprints. In the next section, we discuss how we adapt the AdaBoost algorithm for the CHOIR design.

1.1 Memory-Based Inference of CHOIR

Figure 2a illustrates an example of a decision tree. This decision tree has multi-level decisions using two decision stumps, i.e., the two decision nodes of the tree. For each decision stump, different features of a F-dimensional data point, \(\mathbf{v} \), are considered, i.e., \(v_a \) and \(v_b \) for \(0 \leq a < F \) and \(0 \leq b < F \). The leaf node includes the probabilities of each class, \(p \). In this example, \(K \) is 2.

In the CHOIR design, a DT-MEM implements a decision tree based on the concept of auto-associative memory which repeatedly activates a row using internal memory data. Figure 2b shows the structure of the DT-MEM that does the prediction of the example decision tree inside the memory. The DT-MEM has four memory components, feature, value, node type, and data. The value memory component exploits a CAM structure, which supports an in-memory search functionality, and others are designed as normal memory blocks. Each component except the feature one has \(2D_{\max} \) memory rows for each edge, while the feature part has \(D_{\max} \) rows, a design parameter that determines the maximum number of decision stumps. There is another design parameter, \(K_{\max} \), which is the maximum number of classes supported by CHOIR.

Each row of the feature part corresponds to one decision stump, and its connected two rows of other parts include information about the two children nodes of the decision stump. For the decision tree shown in Figure 2a, to represent the decision stump of the root node, i.e., \(v_a > \alpha \), the 0-th row of the feature part stores the feature index (32-bit integer), i.e., \(\alpha \), and the connected two rows of the value part are set by \(\alpha \) and \(\alpha + \epsilon \) (32-bit floating point values),
choir

the iterations until the
cision stump by going back to the step (i). By processing
The row driver decodes the row index and process the de-
part stores
p
probability values, the
5node type
In contrast, for the right child, which is a leaf node with the
part store the row index of the child decision stump, i.e., 1.
flag is set to 1, and the first of 32 bits of the
node type
1-bit flag stored in the
child type, i.e., decision stump or leaf, is indicated by the
p
(32-bit floating point array) if the child is a leaf node. The
if the child is another decision stump or ii) probability values
for practical image recognition problems,

CHOIR

vide stable and large sense margin [1]. To verify recognition
are designed with a large OFF/ON resistance ratio to pro-
piler in 45nm TSMC technology. The memristor devices
simulator with System Verilog and Synopsys Design com-

2. EXPERIMENTAL RESULTS

2.1 Experimental Setup

We verify and evaluate the proposed design using HSPICE
simulator with System Verilog and Synopsys Design compi-
er in 45nm TSMC technology. The memristor devices are
designed with a large OFF/ON resistance ratio to pro-
vide stable and large sense margin [1]. To verify recognition
quality of CHOIR for practical image recognition problems,

Figure 2: A decision tree example and equivalent

DT-MEM structure

respectively. ϵ is a 32-bit number whose all elements are
0’s except the last bit of 1. The 1-th row of the value part
and its connected row pair have the information about the
decision stump of \(v_h > \beta \) in the same way.

The data part stores either i) a row index (32-bit integer)
if the child is another decision stump or ii) probability values
p \((32\text{-bit floating point array})\) if the child is a leaf node. The
child type, i.e., decision stump or leaf, is indicated by the
1-bit flag stored in the
node type part. For example, since
the left child of the root node is another decision stump, the
node type flag is set to 1, and the first of 32 bits of the data
part store the row index of the child decision stump, i.e., 1.
In contrast, for the right child, which is a leaf node with the
probability values, the node type flag is set by 0 and the data
part stores p.

Based on this structure, the DT-MEM performs the in-
memory decision task by following iterative steps. (i) It
first starts by activating one row. During the initial run,
the first row is activated for the decision stump of the root
node. Then, a feature \(v_h \) is selected based on the index t
of the feature part, and placed into the CAM buffer. At the
same time, the two rows connected to the value part
are enabled. (ii) In the next cycle, the value part performs
the CAM-based similarity search for the two enabled rows,
e.g., α and \(α + ϵ \); that is, the first row (dotted arrow) is
selected if the value is smaller or equal than α. Otherwise,
the second row (solid-line arrow) is selected. Thus, for the
node type and data part, only one row is activated. (iii)
Once the one row is activated, its node type bit determines
whether it proceeds the further search. In this example, if
\(v_h < α \), the activated flag is 1, meaning that it needs to test
another decision stump. The row index of the next decision
stump is stored in the first 32-bits of the data component.
The row driver decodes the row index and process the de-
cision stump by going back to the step (i). By processing
the iterations until the node type flag is 0, we can iden-
tify probability values as the result of the DT-MEM. Once
each DT-MEM identifies the decision probabilities in par-
allel, CHOIR adds the probabilities of all DT trees to create the
final prediction. All these computations happen inside the
memory without external accesses to the stored data for the
decision tree model. This reduces the data movement over-
head, thus significantly improving performance of the whole
prediction procedure which many base learners involve.

2.2 Classification Accuracy

We first present how CHOIR classifies visual objects in prac-
tical images. Figure 3a and 3b show the prediction accuracy
changes of MNIST and Face respectively, for different num-
bers of base learners \(L \) and quantization levels \(Q \), where
the accuracy is defined by the percentage of images whose
object classes are correctly predicted. The results show that
by selecting the sufficient number of base learners and quan-
tization levels, we can achieve the same level of recognition
quality as compared to the precise feature computation (de-
noted Exact in the figure). For example, for MNIST, there
is only 0.4% accuracy loss with the most aggressive quanti-
zevel, i.e., \(Q = 2 \) and \(L = 1024 \), resulting in 97.5% of
accuracy. Face model is more sensitive to the quantization
level, but CHOIR can recognize images 96.7% of the time
which incurs only 0.3% error when \(Q = 6 \) and \(L = 2048 \).
For Pedestrian and Vehicle, CHOIR performs the classifica-
tion for the data computed by Haar-like features without
any approximation. For these two models, the recognition
precision is 91.0% and 93.8%, respectively.

2.3 Energy and Performance Improvement

Our result shows that for the two models which use the
approximate HOG feature extractor, the quantization level
affects the power and performance efficiency of CHOIR since it
uses less memory area. When using \(Q = 6 \), which has 0.3%
of accuracy loss for MNIST workload, CHOIR achieves en-
ergy efficiency improvements of 1896\% as compared to ARM Cortex
A53 with 2654x speedup. The energy and latency of CHOIR
for this workload are 29 \(\mu \)J and 2.0 \(\mu \)s. The comparison
results of the non-approximate models, used for Pedestrian
and Vehicle workloads, are summarized in Figure 3b. The
improvements relative to processor-based implementations
on server (embedded device) are still significant, e.g., 1352x
(132x) energy improvement and 37x (98x) speedup for the
Pedestrian workload.

3. REFERENCES

[1] Shahar Kvatinsky, et al. Vteam: A general model for voltage-
controlled memristors. IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, 2015.